
A DOUBLE INCREMENTAL AGGREGATED GRADIENT METHOD
WITH LINEAR CONVERGENCE RATE FOR LARGE-SCALE OPTIMIZATION

Aryan Mokhtari∗, Mert Gürbüzbalaban†, and Alejandro Ribeiro∗

∗Department of Electrical and Systems Engineering, University of Pennsylvania
†Department of Management Science and Information Systems, Rutgers University

ABSTRACT

This paper considers the problem of minimizing the average of a finite
set of strongly convex functions. We introduce a double incremental ag-
gregated gradient method (DIAG) that computes the gradient of only one
function at each iteration, which is chosen based on a cyclic scheme, and
uses the aggregated average gradient of all the functions to approximate
the full gradient. We prove that not only the proposed DIAG method
converges linearly to the optimal solution, but also its linear convergence
factor justifies the advantage of incremental methods on full batch gradi-
ent descent. In particular, we show theoretically and empirically that one
pass of DIAG is more efficient than one iteration of gradient descent.

Index Terms— Incremental methods, gradient descent, linear con-
vergence rate

1. INTRODUCTION

We consider optimization problems where the objective function can be
written as the average of a set of strongly convex and smooth functions.
Formally, consider variable x ∈ Rp and n objective function summands
fi : Rp → R. We aim to find the minimizer of the average function
f(x) := (1/n)

∑n
i=1 fi(x), i.e.,

x∗ = argmin
x∈Rp

f(x) := argmin
x∈Rp

1

n

n∑
i=1

fi(x). (1)

In this paper, we refer to the functions fi as the instantaneous functions
and the average function f as the global objective function. This class
of optimization problems arises in many applications including machine
learning [1], estimation [2], and sensor networks [3].

When the number of instantaneous functions fi is large, it is costly
to compute descent directions of the aggregate function f . In particu-
lar, this makes the use of gradient descent (GD) in (1) costly because
each descent step requires cycling through the whole set of instantaneous
functions fi. A standard solution to this drawback is in the form of the
stochastic (S)GD method which evaluates the gradient of only one of
the instantaneous functions in each iteration [4]. This algorithm can be
shown to converge under mild conditions while incurring a reasonable
per-iteration cost. This advantage notwithstanding, the convergence rate
of SGD is sublinear, which is slower than the linear convergence rate of
GD. Developing alternative stochastic descent algorithms with linear con-
vergence rates has been a very active area in the last few years. A partial
list of this consequential literature includes stochastic averaging gradient
[5, 6], variance reduction [7, 8], dual coordinate methods [9, 10], hybrid
algorithms [11, 12], and majorization-minimization algorithms [13]. All
of these stochastic methods are successful in achieving a linear conver-
gence rate in expectation.

A separate alternative to reduce the per-iteration cost of GD is the
use of incremental methods [14, 15]. In incremental methods one func-
tion is chosen from the set of n functions at each iteration as in GD but

Work in this paper is supported by ONR N00014-12-1-0997.

the functions are chosen in a cyclic order – as opposed from their selec-
tion uniformly at random in stochastic methods. As in the case of SGD,
cyclic GD exhibits sublinear convergence. This limitation motivated the
development of the incremental aggregated gradient (IAG) method that
achieves a linear convergence rate [16]. To explain our contribution, we
must emphasize that the convergence constant of IAG can be smaller than
the convergence constant of GD (Section 2). Thus, even though IAG is
designed to improve upon GD, the available analyses still make it impos-
sible to assert that IAG outperforms GD under all circumstances. In fact,
the question of whether it is possible at all to design a cyclic method that
is guaranteed to always outperform GD remains open.

In this paper we introduce the double incremental aggregated gra-
dient (DIAG) method and show that its convergence rate is linear, with
a convergence constant that is guaranteed to be smaller than the con-
vergence constant of GD. The main difference between DIAG and IAG
methods is that DIAG iterates are computed by using averages of iterates
and gradients whereas IAG utilizes gradient averages but does not utilize
iterate averages. DIAG is the first cyclic incremental gradient method
which is guaranteed to improve the performance of GD.

We start the paper by presenting the GD and IAG algorithms and
reviewing their convergence rates (Section 2). Then, we present the pro-
posed DIAG method and explain its difference with IAG in approximat-
ing the global function f (Section 3). We show that this critical difference
leads to an incremental gradient algorithm with a smaller linear conver-
gence factor (Section 4). Moreover, we compare the performances of
DIAG, GD, and IAG in solving a quadratic programming and a binary
classification problem (Section 5). Finally, we close the paper by con-
cluding remarks (Section 6). Proofs of results in this paper are available
in [17].

2. BACKGROUND AND RELATED WORKS

Since the objective function in (1) is convex, descent methods can be
used to find the optimal argument x∗. In this paper, we are interested in
studying methods that converge to the optimal argument of f(x) at a lin-
ear rate. It is customary for the linear convergence analysis of first-order
methods to assume that the functions are smooth and strongly convex.
We formalize these conditions in the following assumption.

Assumption 1 The functions fi are differentiable and strongly convex
with constant µ, and the gradients ∇fi are Lipschitz continuous with
constant L, i.e., for all x,y ∈ Rp we have

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖. (2)

The strong convexity of the functions fi with constant µ implies that
the global function f is also strongly convex with constant µ. Likewise,
the condition in (2) yields Lipschitz continuity of the global function gra-
dients∇f with constant L. Note that the conditions in Assumption 1 are
mild, and they hold for most machine learning applications.

The optimization problem in (1) can be solved using the gradient
descent (GD) method. In GD, the variable xk is updated by descending



through the negative direction of the gradient∇f(xk), i.e.,

xk+1 = xk − ε∇f(xk) = xk − ε

n

n∑
i=1

∇fi(xk), (3)

where ε is the stepsize. According to the convergence analysis of GD
in [18], the sequence of iterates xk converges linearly to the optimal ar-
gument if the stepsize satisifes ε < 2/L . The fastest convergence rate
belongs to the stepsize ε = 2/(µ+ L) which leads to the inequality

‖xk − x∗‖ ≤
(
κ− 1

κ+ 1

)k
‖x0 − x∗‖, (4)

where κ = L/µ is the condition number of the objective function. The
result in (4) shows that GD reduces the difference between the iterate xk

and the optimal argument x∗ by the factor (κ − 1)/(κ + 1) after one
iteration or equivalently after one pass over the dataset.

The IAG method reduces the computational complexity of GD by
computing only one gradient at each iteration. In IAG, at each iteration
the gradient of only one function, which is chosen in a cyclic order, is
updated and the average of gradients is used as an approximation for the
exact gradient. In particular, if we define yki as the copy of the variable
x for the last time that the function fi’s gradient is updated up to step k,
we can write the update of IAG as

xk+1 = xk − ε

n

n∑
i=1

∇fi(yki ). (5)

It has been shown that IAG is linearly convergent for strongly convex
functions with Lipschitz continuous gradients [16]. In particular, the se-
quence of iterates xk generated by IAG satisfies the inequality

‖xk − x∗‖ ≤
(
1− 2

25n(2n+ 1)(κ+ 1)2

)k
‖x0 − x∗‖. (6)

Comparing the decrement factors of GD in (4) and IAG after n gradient
evaluations in (6) shows that for some values of n and κ the GD method
is preferable to IAG in terms of upper bounds. In particular, there exists
n and κ such that the decrement factor of one iteration of GD is smaller
than the decrement factor of IAG after n iterations, i.e., if the inequality(

κ− 1

κ+ 1

)
<

(
1− 2

25n(2n+ 1)(κ+ 1)2

)n
, (7)

is satisfied, the convergence rate of GD in (4) is better than the conver-
gence rate of IAG in (6). This is more likely to happen when the condition
number κ is relatively large. In the following section, we propose a new
incremental gradient method that is preferable with respect to GD for all
values of n and κ.

3. ALGORITHM DEFINITION

The update of IAG in (5) can be written as the minimization of a first order
approximation of the objective function f(x) where each instantaneous
function fi(x) is approximated by the following approximation

fi(x) ≈ fi(xk) +∇fi(yki )T (x− xk) +
1

2ε
‖x− xk‖2. (8)

Notice that the first two terms fi(xk) +∇fi(yki )T (x− xk) correspond
to the first order approximation of the function fi around the iterate yki .
The last term, which is 1/(2ε)‖x−xk‖2, is a proximal term that is added
to the first order approximation. This approximation is different from
the customary approximation that is used in first-order methods since the
first-order approximation of the function fi(x) is evaluated at yki , while
the iterate xk is used in the proximal term. This observation verifies that

the IAG method performs well when the delayed variables yki are close
to the current iterate xk.

We resolve this issue by replacing the approximation of IAG in (8)
with the approximation that uses yki both in first-order approximation and
proximity condition. In particular, we propose a novel cyclic incremental
method called double incremental aggregated gradient method (DIAG)
which approximates the instantaneous function fi(x) as

fi(x) ≈ fi(yki ) +∇fi(yki )T (x− yki ) +
1

2ε
‖x− yki ‖2. (9)

In general, the approximation in (9) is more accurate than the one in (8)
since the first order approximation fi(yki )+∇fi(yki )T (x−yki ) and the
proximal term (1/2ε)‖x− yki ‖2 are both evaluated using the same point
which is yki . Considering this approximation the update of the DIAG
method is given by

xk+1 = argmin
x∈Rp

{
1

n

n∑
i=1

fi(y
k
i ) +

1

n

n∑
i=1

∇fi(yki )T (x− yki )

+
1

n

n∑
i=1

1

2ε
‖x− yki ‖2

}
. (10)

The update in (10) minimizes the first-order approximation of the global
objective function f(x) which is the outcome of the instantaneous func-
tions approximation in (9). Considering the convex programming in (10)
we can derive a closed form solution for the variable xk+1 as

xk+1 =
1

n

n∑
i=1

yki −
ε

n

n∑
i=1

∇fi(yki ). (11)

The DIAG update in (11) requires the incremented aggregate of both
variables and gradients and only uses gradient (first-order) information.
Hence, we call it the double incremental aggregated gradient method.

Since we use a cyclic scheme, the set of variables {yk1 ,yk2 , . . . ,ykn}
is equal to the set {xk,xk−1, . . . ,xk−n+1}. Hence, the update for the
proposed cyclic incremental aggregated gradient method with the cyclic
order f1, f2, . . . , fn can be written as

xk+1 =
1

n

n∑
i=1

xk−n+i − ε

n

n∑
i=1

∇fi(xk−n+i). (12)

The update in (12) shows that we use the first-order information of
the functions fi around the last n iterates to evaluate the new up-
date xk+1. In other words, xk+1 is a function of the last n iterates
{xk,xk−1, . . . ,xk−n+1}. This observation is very fundamental in the
analysis of the DIAG method as we study in Section 4.

Remark 1 One may consider the proposed DIAG method as a cyclic
version of the stochastic MISO algorithm in [13]. This is a valid interpre-
tation; however, the convergence analysis of MISO cannot guarantee that
for all choices of n and κ it outperforms GD, while we establish theoret-
ical results in Section 4 which guarantee the advantages of DIAG on GD
for any n and κ. Moreover, the proposed DIAG method is designed based
on the new interpretation in (9) that leads to a novel proof technique; see
Lemma 1. This new analysis is different from the analysis of MISO in
[13] and provides stronger convergence results.

3.1. Implementation Details

Naive implementation of the update in (11) requires computation of sum
of n vectors per iteration which is computationally costly. This unneces-
sary computation can be avoided by tracking the sums in (11) over time.
To be more precise, the first sum in (11) which is the sum of the variables
can be updated as

n∑
i=1

yk+1
i =

n∑
i=1

yki + xk+1 − ykik , (13)



Algorithm 1 The proposed DIAG method

1: Require: {y0
i }ni=1 = x0, and {∇fi(y0

i )}ni=1

2: Set the function index as i0 = 1
3: for k = 0, 1, . . . do

4: Update variable xk+1 =
1

n

n∑
i=1

yki −
ε

n

n∑
i=1

∇fi(yki ).

5: Update the sum of variables
n∑
i=1

yk+1
i =

n∑
i=1

yki + xk+1 − ykik .

6: Compute ∇fik (xk+1) and update the sum of gradients
n∑
i=1

∇fi(yk+1
i ) = ∇fik (x

k+1)−∇fik (y
k
ik ) +

n∑
i=1

∇fi(yki ).

7: Replace ykik and ∇fik (ykik ) in the table by ∇fik (xk+1) and
xk+1, respectively. The rest remain unchanged. i.e., yk+1

i = yki
and∇fi(yk+1

i ) = ∇fi(yki ) for i 6= ik.
8: Update the function index ik+1 = mod(ik, n) + 1 .
9: end for

where ik is the index of the function that is chosen at step k. Likewise,
the sum of gradients in (11) can be updated as

n∑
i=1

∇fi(yk+1
i ) =

n∑
i=1

∇fi(yki ) +∇fik (x
k+1)−∇fik (y

k
ik ). (14)

Note that the implementation of DIAG requires a memory of the order
O(np) to store the variables yki and gradients∇fi(yki ).

The proposed DIAG method is summarized in Algorithm 1. The
variables for all copies of the vector x are initialized by vector 0, i.e.,
y0
1 = · · · = y0

n = x0 = 0, and their corresponding gradients are
stored in the memory. At each iteration k, the updated variable xk+1

is computed in Step 4 using the update in (11). The sums of variables
and gradients are updated in Step 5 and 6, respectively, following the
recursions in (13) and (14). In Step 7, the old variable and gradient of the
updated function fik are replaced with their updated versions and other
components of the the variable and gradient tables remain unchanged.
Finally, in Step 8, the function index is updated in a cyclic manner by
increasing the index ik by 1. If the current value of the index ik is n, we
set ik+1 = 1 for the next iteration.

4. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of the DIAG method
and justify its advantages versus the GD algorithm.

In the following lemma, we characterize an upper bound for the opti-
mality error at step k + 1 in terms of the optimality errors of its previous
n iterations.

Lemma 1 Consider the proposed DIAG method in (11). If the conditions
in Assumption 1 hold, and the stepsize ε is chosen as ε = 2/(µ+L), the
sequence of iterates xk generated by DIAG satisfies the inequality

‖xk+1−x∗‖ ≤ κ− 1

κ+ 1

[
‖xk − x∗‖+ · · ·+ ‖xk−n+1 − x∗‖

n

]
, (15)

where κ = L/µ is the objective function condition number.

The result in Lemma 1 has a significant role in the analysis of the
proposed DIAG method. It shows that the error ‖xk+1 − x∗‖ at step
k + 1 is smaller than the average of the last n errors. This is true since
the ratio (κ − 1)/(κ + 1) is strictly smaller than 1. Note that the cyclic
scheme of DIAG is critical to prove the result in (15), since it allows to
replace the sum

∑n
i=1 ‖y

k
i − x∗‖ by the sum of the last n errors ‖xk −

x∗‖+ · · ·+ ‖xk−n+1 −x∗‖. If we pick functions uniformly at random,

as in MISO, it is not possible to write the expression in (15), even in
expectation. Likewise, for the IAG method, we cannot guarantee that the
inequality in (15) holds. This special property distinguishes DIAG from
IAG and MISO. In the following theorem, we use the result in Lemma 1
to show that the sequence of errors ‖xk − x∗‖ is convergent.

Theorem 1 Consider the proposed DIAG method in (11). If the condi-
tions in Assumption 1 hold, and the stepsize ε is chosen as ε = 2/(µ+L),
then the error after m passes over the functions fi, i.e., k = mn itera-
tions, is bounded above by

‖xmn − x∗‖ ≤ ρm
(
1−

(
n− 1

n

)
(1− ρ)

)
‖x0 − x∗‖, (16)

where ρ := (κ− 1)/(κ+ 1).

The result in Theorem 1 verifies the advantage of DIAG with respect
to GD. The result in (16) shows that the error of DIAG afterm passes over
the dataset, which is bounded above by ρm(1− (1−ρ)(n−1)/n)‖x0−
x∗‖, is strictly smaller than the upper bound for the error of GD after m
iterations, which is given by ρm‖x0 − x∗‖. Hence, the DIAG method
outperforms GD for any choice of κ and n > 1. Notice that the upper
bound for GD is tight, and there exists an optimization problem such that
the error of GD satisfies the equality ‖xm − x∗‖ = ρm‖x0 − x∗‖.

Although the result in Proposition 1 implies that DIAG is preferable
relative to GD, it is cannot show linear convergence of DIAG. To be more
precise, the result in Proposition 1 shows that the subsequence of errors
‖xkn − x∗‖∞k=1, which are associated with the variables at the end of
each pass over the set of functions, is linearly convergent. However, we
aim to show that the whole sequence ‖xk − x∗‖ is linearly convergent.
In the following theorem, we show that the sequence of iterates generated
by DIAG converges linearly.

Theorem 2 Consider the proposed DIAG method in (11). Further, recall
the definition of the constant ρ := (κ − 1)/(κ + 1). If the conditions
in Assumption 1 hold and ε = 2/(µ + L), the sequence of iterates xk

generated by DIAG satisfies

‖xk − x∗‖ ≤ a0γk0 ‖x0 − x∗‖, (17)

where γ0 is the only root of the polynomial equation

γn+1 −
(
1 +

ρ

n

)
γn +

ρ

n
= 0 (18)

in the interval [0, 1), and a0 is given by

a0 = max
i∈{1,...,n}

(
1− (i− 1)(1− ρ)

n

)
γ−i0 . (19)

The result in Theorem 2 shows that the whole sequence of iterates xk

generated by DIAG converges linearly to the optimal argument x∗. Note
that the polynomial in (18) has only one root in the interval [0, 1). To ver-
ify this claim, consider the function h(γ) := γn+1−(1 + ρ/n) γn+ρ/n
for γ ∈ [0, 1). The derivative of the function h is given by (dh/dγ) =
(n+1)γn− (n+ ρ)γn−1. Therefore, the only critical point of the func-
tion h in the interval (0, 1) is γ∗ = (n + ρ)/(n + 1). The point γ∗ is a
local minimum for the function h, since the second derivative of the func-
tion h is positive at γ∗. Note that h(γ∗) < 0, h(0) > 0, and h(1) = 0.
These observation imply that the function h has only one root γ0 in the
interval [0, 1) and this root is between 0 and γ∗.

5. NUMERICAL EXPERIMENTS

In this section, we compare the performances of GD, IAG, and DIAG.
First, we apply these methods to solve the quadratic programming

min
x∈Rp

f(x) :=
1

n

n∑
i=1

1

2
xTAix+ bTi x, (20)



0 5000 10000 15000

number of gradient evaluations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

er
ro
r

‖
x
k
−
x
∗
‖

‖
x
0
−
x
∗
‖

GD

IAG

DIAG

Fig. 1. Convergence paths of GD, IAG, and DIAG for the quadratic pro-
gramming with n = 200 and κ = 10.

0 2 4 6 8 10 12 14 16

number of gradient evaluations ×10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

e
rr
o
r

‖
x
k
−
x
∗
‖

‖
x
0
−
x
∗
‖

GD

IAG

DIAG

Fig. 2. Convergence paths of GD, IAG, and DIAG for the quadratic pro-
gramming with n = 200 and κ = 117.

where Ai ∈ Rp×p is a diagonal matrix and bi ∈ Rp is a random vector
chosen from the box [0, 1]p. To control the problem condition number,
the first p/2 diagonal elements of Ai are chosen uniformly at random
from the interval [1, 101, . . . , 10η/2] and its last p/2 elements chosen
from the interval [1, 10−1, . . . , 10−η/2]. This selection resulting in the
sum

∑n
i=1 Ai having eigenvalues in the range [n10−η/2, n10η/2]. In

our simulations, we fix the variable dimension as p = 20 and the number
of functions as n = 200. Moreover, the stepsizes of GD and DIAG are
set as their best theoretical stepsize which are εGD = 2/(µ + L) and
εDIAG = 2/(µ + L), respectively. Note that the stepsize suggested
in [16] for IAG is εIAG = 0.32/((nL)(L + µ)); however, this choice
of stepsize is very slow in practice. Thus, we use the stepsize εIAG =
2/(nL) which performs better than the one suggested in [16].

To have a fair comparison, we compare the algorithms in terms of the
total number of gradient evaluations. Note that comparison of these meth-
ods in terms of the total number of iterations would not be fair since each
iteration of GD requires n gradient evaluations, while IAG and DIAG
only require one gradient computation per iteration.

We first consider the case that η = 1 and use the realization with
condition number κ = 10 to have a relatively small condition num-
ber. Fig. 1 demonstrates the convergence paths of the normalized error
‖xk − x∗‖/‖x0 − x∗‖ for IAG, DIAG, and GD when n = 200 and
κ = 10. As we observe, IAG performs better than GD, while the best
performance belongs to DIAG. In the second experiment, we increase
the problem condition number by setting η = 2 and using the realization
with condition number κ = 117. Fig. 2 illustrates the performances of

0 2 4 6 8 10 12 14 16 18 20

number of passes over the dataset

10
-1

10
0

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
er
ro
r
f
(x

k
)
−
f
(x

∗
)

GD with ǫ = 2/(µ+ L)
IAG with ǫ = 2/(nL)
DIAG with ǫ = 2/(µ+ L)
GD with the best stepsize
IAG with the best stepsize
DIAG with the best stepsize

Fig. 3. Convergence paths of GD, IAG, and DIAG for the binary classifi-
cation application.

these methods for the case that n = 200 and κ = 117. We observe
that the convergence path of IAG is almost identical to the one for GD.
In this experiment, we also observe that DIAG has the best performance
among the three methods. Note that the relative performance of IAG and
GD changes for problems with different condition numbers. On the other
hand, the relative convergence paths of DIAG and GD does not change in
different settings, and DIAG consistently outperforms GD.

We also compare the performances of GD, IAG, and DIAG in solv-
ing a binary classification problem. Consider the logistic regression prob-
lem where n samples {ui}ni=1 and their corresponding labels {li}ni=1 are
given. The dimension of samples is p, i.e., ui ∈ Rp, and the labels li are
either −1 or 1. The goal is to find the optimal classifier x∗ ∈ Rp that
minimizes the regularized logistic loss which is given by

min
x∈Rp

f(x) :=
1

n

n∑
i=1

log(1 + exp(−lixTui)) +
λ

2
‖x‖2. (21)

The objective function f in (21) is strongly convex with constant µ =
λ and its gradients are Lipschitz continuous with constant L = λ +
ζ/4 where ζ = maxi u

T
i ui. Note that the functions fi in this case can

be defined as fi(x) = log(1 + exp(−lixTui)) + (λ/2)‖x‖2. It is
easy to verify that the instantaneous functions fi are also strongly convex
with constant µ = L, and their gradients are Lipschitz continuous with
constant L = λ+ ζ/4.

We apply GD, IAG, and DIAG to the logistic regression problem in
(21) for the MNIST dataset [19]. We assign label li = 1 to the samples
that correspond to digit 8 and label li = −1 to those associated with
digit 0. We get a total of n = 11, 774 training examples, each of dimen-
sion p = 784. The objective function error f(xk) − f(x∗) of the GD,
IAG, and DIAG methods versus the number of passes over the dataset are
shown in Fig. 3 for the stepsizes εGD = 2/(µ + L), εIAG = 2/(nL),
and εDIAG = 2/(µ+L). Moreover, we report the convergence paths of
these algorithms for their best choice of stepsize in practice. The results
verify the advantage of the proposed DIAG method relative to IAG and
GD in both scenarios.

6. CONCLUSIONS

In this paper, we proposed a novel cyclic incremental aggregated gradient
method (DIAG) for solving the problem of minimizing the average of
a set of smooth and strongly convex functions. The proposed method
is the first cyclic incremental method that has convergence guarantees
better than the gradient descent method. Numerical experiments justify
the advantage of the proposed DIAG method relative to gradient descent
and other first-order incremental methods.



7. REFERENCES

[1] L. Bottou and Y. Le Cun, “On-line learning for very large data sets,”
Applied stochastic models in business and industry, vol. 21, no. 2,
pp. 137–151, 2005.

[2] D. P. Bertsekas, “Incremental least squares methods and the ex-
tended kalman filter,” SIAM Journal on Optimization, vol. 6, no. 3,
pp. 807–822, 1996.

[3] S. S. Ram, A. Nedic, and V. Veeravalli, “Stochastic incremental
gradient descent for estimation in sensor networks,” in 2007 Con-
ference Record of the Forty-First Asilomar Conference on Signals,
Systems and Computers. IEEE, 2007, pp. 582–586.

[4] H. Robbins and S. Monro, “A stochastic approximation method,”
The annals of mathematical statistics, pp. 400–407, 1951.

[5] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient
method with an exponential convergence rate for finite training
sets,” in Advances in Neural Information Processing Systems, 2012,
pp. 2663–2671.

[6] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incre-
mental gradient method with support for non-strongly convex com-
posite objectives,” in Advances in Neural Information Processing
Systems, 2014, pp. 1646–1654.

[7] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Infor-
mation Processing Systems, 2013, pp. 315–323.

[8] L. Xiao and T. Zhang, “A proximal stochastic gradient method with
progressive variance reduction,” SIAM Journal on Optimization,
vol. 24, no. 4, pp. 2057–2075, 2014.

[9] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss,” The Journal of Machine Learning
Research, vol. 14, no. 1, pp. 567–599, 2013.

[10] ——, “Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization,” Mathematical Programming, vol.
155, no. 1-2, pp. 105–145, 2016.

[11] L. Zhang, M. Mahdavi, and R. Jin, “Linear convergence with con-
dition number independent access of full gradients,” in Advances in
Neural Information Processing Systems, 2013, pp. 980–988.

[12] J. Konečnỳ and P. Richtárik, “Semi-stochastic gradient descent
methods,” arXiv preprint arXiv:1312.1666, 2013.

[13] J. Mairal, “Incremental majorization-minimization optimization
with application to large-scale machine learning,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 829–855, 2015.

[14] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental
gradient method with a constant step size,” SIAM Journal on Opti-
mization, vol. 18, no. 1, pp. 29–51, 2007.

[15] P. Tseng and S. Yun, “Incrementally updated gradient methods for
constrained and regularized optimization,” Journal of Optimization
Theory and Applications, vol. 160, no. 3, pp. 832–853, 2014.

[16] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “On the conver-
gence rate of incremental aggregated gradient algorithms,” arXiv
preprint arXiv:1506.02081, 2015.

[17] A. Mokhtari, M. Gürbüzbalaban, and A. Ribeiro, “On the
linear convergence of a cyclic incremental aggregated gradient
method,” University of Pennsylvania Technical Report, 2016.
[Online]. Available: https://fling.seas.upenn.edu/∼aryanm/wiki/
CAG journal.pdf

[18] Y. Nesterov, Introductory lectures on convex optimization.
Springer Science & Business Media, 2004, vol. 87.

[19] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of
handwritten digits,” 1998.

https://fling.seas.upenn.edu/~aryanm/wiki/CAG_journal.pdf
https://fling.seas.upenn.edu/~aryanm/wiki/CAG_journal.pdf

	 Introduction
	 Background and Related Works
	 Algorithm Definition
	 Implementation Details

	 Convergence Analysis
	 Numerical experiments
	 Conclusions
	 References

