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Abstract

This thesis is composed of three independent parts:

Part I concerns spectral and pseudospectral robust stability measures for linear

dynamical systems. Popular measures are theH∞ norm, the distance to instability,

numerical radius, spectral abscissa and radius, pseudospectral abscissa and radius.

Firstly, we develop and analyze the convergence of a new algorithm to approximate

the H∞ norm of large sparse systems. Secondly, we tackle the static output feed-

back problem, a problem closely related to minimizing the abscissa (largest real

part of the roots) over a family of monic polynomials. We show that when there is

just one affine constraint on the coefficients of the monic polynomials, this problem

is tractable, deriving an explicit formula for the optimizer when it exists and an

approximate optimizer otherwise, and giving a method to compute it efficiently.

Thirdly, we develop a new Newton-based algorithm for the calculation of the dis-

tance to discrete instability and prove that for generic matrices the algorithm is

locally quadratically convergent. For the numerical radius, we give a proof of the

fact that the Mengi-Overton algorithm is always quadratically convergent. Finally,

we give some regularity results on pseudospectra, the pseudospectral abscissa and

the pseudospectral radius. These results answer affirmatively a conjecture raised

by Lewis & Pang in 2008.

Part II concerns nonsmooth optimization. We study two interesting nonsmooth

functions introduced by Nesterov. We characterize Clarke stationary and Mor-

dukhovich stationary points of these functions. Nonsmooth optimization algo-

rithms have an interesting behavior on the second function, converging very often

to a nonminimizing Clarke stationary point that is not Mordukhovich stationary.

Part III concerns the equivalence between one-bit sigma-delta quantization and

vi



a recent optimization-based halftoning method. Sigma-delta quantization is a pop-

ular method for the analog-to-digital conversion of signals, whereas halftoning is a

core process governing most digital printing and many display devices, by which

continuous tone images are converted to bi-level images. The halftoning problem

was recently formulated as a global optimization problem. We prove that the same

objective function is minimized in one-bit sigma-delta quantization.
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Introduction

This thesis consists of three independent parts; each part is independent from

the others in terms of notation and content.

Part I (Chapters 1-4) is on the spectral and pseudospectral robust stability

measures for linear dynamical systems with input and output. Such a system is

stable if it has bounded output for the types of input that we are interested in.

However, besides stability, we desire systems that are robustly stable, i.e., systems

that remain stable under perturbations. One approach to design robust systems is

to optimize a robust stability measure. Popular robust stability measures are the

H∞ norm, the distance to continuous instability (a.k.a. complex stability radius),

the distance to discrete instability, numerical radius, spectral abscissa and radius,

pseudospectral abscissa and radius [BHLO06a], all which we call robust stability

functions (RSFs). The difficulty of the optimal system design problems with RSFs

is due to the nonsmoothness and nonconvexity of RSFs. This is a topic where

optimization and numerical linear algebra meet, closely linked to nonsmooth opti-

mization techniques, eigenvalue and pseudospectrum problems, and perturbation

theory of linear operators.

Our primary contribution in Part I is in the large scale computation of the

H∞ norm. Algorithms to compute the H∞ norm accurately exist [BB90b, BS90,

Rob89, GDV98], but they are impractical when the dimension is large and they do

not exploit the structure of many interesting problems where large sparse matrices

arise, especially in the control of partial differential equations (PDE), for example

in the control of the heat equation with boundary control [LV07]. In Chapter 1 we

develop a novel algorithm to approximate the H∞ norm of large sparse systems and

discuss its local convergence. We also provide a freely available Matlab package
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that implements the algorithm. In addition, the new algorithm will be included in

the Hifoo package [Hif] eventually so that it can be used to design controllers in

PDE applications, many of which are collected in [Lei06].

In Chapter 2, we tackle the static output feedback problem where the question

is whether a controller that would make the closed-loop system stable exists, a

problem closely related to minimizing the abscissa (largest real part of the roots)

over a family of monic polynomials. It is known that this problem is NP-hard in

many cases [BT95, Nem93]. However, in Chapter 2, we show that in some cases

this problem is tractable, deriving an explicit formula for the optimizer when it

exists and an approximation when it does not, and giving a method to compute

it efficiently. This work has been accepted for publication in IEEE Trans. Auto.

Control [BGMO].

In Chapter 3, we study the distance to discrete instability and the numerical ra-

dius (the latter arises in the analysis of the convergence of iterative solution meth-

ods for linear systems and the stability of hyperbolic finite-difference schemes).

Inspired by the work [FS11, SP05], we develop a new Newton-based algorithm for

the calculation of the distance to discrete instability and prove that for generic

matrices the algorithm is locally quadratically convergent. For the numerical ra-

dius, firstly we prove that the assumption made in the Mengi-Overton algorithm

[MO05] always holds unconditionally. Secondly, inspired by [GDV98], we improve

this algorithm by developing a cubically convergent variant.

In Chapter 4, we study the regularity of the pseudospectral abscissa and radius

functions and of pseudospectra. Besides having applications to robust control,

pseudospectra, pseudospectral abscissa and radius are useful for studying the con-

vergence and stability behavior of operators and matrices arising in many fields
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such as numerical analysis, fluid dynamics and Markov chains [TE05]. It has

been argued that for nonnormal operators, pseudoeigenvalues and pseudoeigen-

vectors reveal more information than the eigenvalues and eigenvectors. Under-

standing the regularity of the ε-pseudospectrum, ε-pseudospectral abscissa and

ε-pseudospectral radius as a function of the underlying matrix and the scalar pa-

rameter ε is important both for understanding the sensitivity of pseudoeigenval-

ues and pseudoeigenvectors and for the design of efficient algorithms to compute

pseudospectra-related quantities. Some exciting recent work has been done in this

area [Kar03, LP08, BL10]. In Chapter 4, we give a proof of the fact that the pseudo-

spectral abscissa and pseudospectral radius are globally Lipschitz together with the

local Lipschitzness and differentiability of the boundary of the pseudospectrum

where the pseudospectral abscissa or pseudospectral radius value is attained (this

extends to more general boundary points by rotating the pseudospectrum). The

results, published in [GO12b], answer affirmatively a conjecture raised by Lewis

and Pang [LP08] and have applications to the design and study of pseudospectra-

related algorithms, for instance, to the convergence proof of a recent algorithm by

Kressner and Vandereycken for computing the stability radius [KV12]. In addition,

they justify the use of nonsmooth optimization algorithms developed for locally

Lipschitz functions such as the gradient sampling method [BLO05] to optimize the

pseudospectral abscissa and radius of a parameter dependent matrix. Furthermore,

an improvement of the differentiability of the pseudospectrum boundary result to

the twice continuously differentiability of the boundary seems possible with simi-

lar machinery, and this would imply that the criss-cross algorithm of [BLO03a] is

always, not just almost always, quadratically convergent.

Part II consists of Chapter 5 and concerns nonsmooth optimization. Convex
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optimization problems have many important properties, including a powerful du-

ality theory and the property that any local minimum is also a global minimum.

Nonsmooth optimization refers to the more general problem of minimizing func-

tions that are typically not differentiable at their minimizers. The RSFs mentioned

above are typical examples. Nonsmooth optimization requires the study of subgra-

dients (a generalization of the notion of a gradient in the absence of smoothness)

and uses tools and ideas from the field variational analysis. In Chapter 5 we

study two interesting nonsmooth functions introduced by Nesterov. Our contri-

bution is to characterize Clarke stationary and Mordukhovich stationary points

of these functions using variational analysis techniques. Nonsmooth optimization

algorithms have an interesting behavior on the second function, converging very

often to a nonminimizing Clarke stationary point that is not Mordukhovich sta-

tionary. Our results, published in [GO12a], motivated some other recent related

research on the behavior of optimization algorithms on smooth variants of these

functions (Jarre [Jar], Cartis et al. [CGT11]).

Part III consists of Chapter 6 and is related to the quantization of signals.

Quantization is the process of mapping a large set of input values to a smaller set,

and is an integral part of many electronic devices that convert analog (continuous)

signals to digital ones. Quantization is inherent in many applications. For example,

converting an image to GIF format reduces the file size by limiting the number

of colors to 256. Halftoning of images, being an important part of most digital

printing and many display devices, is another quantization problem, by which

images of continuous tones are converted to ensembles of discrete dots in a limited

number of colors. A recent approach to halftoning of images is to formulate the

halftoning problem as a global energy minimization problem where the energy is a
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difference of two convex functionals [TSG+11]. The objective function is an energy

functional inspired by electrostatics. In Chapter 6, we demonstrate the connections

of this approach with the sigma-delta quantization. In particular, we prove that

the same energy functional is also minimized by one-bit first-order sigma-delta

quantization.

Chapter 1 is done in collaboration with Nicola Guglielmi and Michael Over-

ton [GGO]. Chapter 2 is done in collaboration with Vincent Blondel, Alexandre

Megretski and Michael Overton [BGMO10, BGMO]. Chapters 4-5 are joint work

with Michael Overton [GO12a, GO12b] and Chapter 6 is joint work with Sinan

Güntürk [GG12].
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Robust Stability and

Pseudospectra
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Chapter 1

Fast approximation of the H∞

norm

1.1 Introduction

Consider the continuous-time linear dynamical system with input and output

defined by

ẋ(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) +Du(t)

where A ∈ Cn,n, B ∈ Cn,p and C ∈ Cm,n and D ∈ Cm,p. The discrete time

analogue is

xk+1 = Axk +Buk (1.2)

yk = Cxk +Duk.
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In this paper we present new methods for computing the H∞ norm of the trans-

fer function associated with these systems, a well known important quantity for

measuring robust stability [HP05, ZGD95]. We build on two foundations. The

first is the theory of spectral value sets presented in [HP05], as the H∞ norm can

be viewed as the reciprocal of the largest value of ε such that the associated ε-

spectral value set is contained in the stability region for the dynamical system (the

left-half plane in the continuous-time case and the unit disk in the discrete-time

case). The second is an algorithm recently introduced by Guglielmi and Overton

[GO11] for computing the rightmost point (or the largest point in modulus) in the

ε-pseudospectrum of a matrix A. We extend this algorithm from pseudospectra to

spectral value sets, and then give a Newton-bisection method to approximate the

H∞ norm. The algorithm is much faster than the standard Boyd-Balakrishnan-

Bruinsma-Steinbuch algorithm to compute the H∞ norm when n ≫ max(m, p)

and the matrix A is sparse.

The paper is organized as follows. In the next section we establish the fun-

damental properties of spectral value sets that we will need and we define the

H∞ norm. In Section 1.3 we generalize the algorithm of [GO11] for comput-

ing the pseudospectral abscissa of a matrix A to a spectral value set abscissa for

(A,B,C,D). We briefly discuss local convergence analysis for this method, includ-

ing the characterization of fixed points of the iteration, and we give a variation for

the spectral value set radius. Then in Section 1.4 we introduce a Newton-bisection

method to approximate the H∞ norm. Every step of this method requires the

approximation of a spectral value set abscissa (or radius) and each of these is

carried out by an iteration which requires only the computation of the rightmost

eigenvalue (or eigenvalue with largest modulus) of a sequence of matrices that are
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rank-one perturbations of A. In Sections 1.5.1 and 1.5.2 we present numerical

examples.

1.2 Spectral Value Sets

The first part of this section follows the development in [HP05, Section 5.1];

more detailed attribution appears below. Given A,B,C,D defining the linear

dynamical system (1.1), consider the perturbed system matrix

M(E) = A+BE(I −DE)−1C for E ∈ Cp×m (1.3)

assuming I −DE is invertible and the associated transfer matrix

G(λ) = C(λI − A)−1B +D for λ ∈ C\σ(A)

where σ(·) denotes spectrum. The following fundamental theorem relates the norm

of the transfer matrix evaluated at eigenvalues of the perturbed system matrices to

the norms of the underlying perturbations E. Here and throughout the paper, ∥ ·∥

denotes the matrix or vector 2-norm ∥ · ∥2, or equivalently the maximum singular

value. The dimension of the identity matrix I depends on the context.

Theorem 1.2.1. Let ε ∈ R, with ε > 0 and ε∥D∥ < 1. Then for λ ̸∈ σ(A) the

following are equivalent:

∥G(λ)∥ ≥ ε−1 and λ ∈ σ(M(E)) for some E with ∥E∥ ≤ ε. (1.4)

Proof. Suppose the first statement holds with ξ = ∥G(λ)∥−1 ≤ ε. Let u and v
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respectively be right and left singular vectors of G(λ) corresponding to the largest

singular value ξ−1, so that ξG(λ)u = v, ξv∗G(λ) = u∗ and ∥u∥ = ∥v∥ = 1. Set

E = ξuv∗ so that ∥E∥ = ξ ≤ ε. We have G(λ)E = vv∗, so

(C(λI − A)−1B +D)Ev = v. (1.5)

Define Y = (I−DE)−1C and Z = (λI−A)−1BE, so we have Y Zv = v. It follows

that ZY x = x, with x = Zv ̸= 0 an eigenvector of ZY . Multiplying through by

λI − A, we have

BE(I −DE)−1Cx = (λI − A)x. (1.6)

proving the second statement in (1.4).

Conversely, suppose that the second statement holds. Then ∃x ̸= 0 such that

(1.6) holds. We have ZY x = x, so x is an eigenvector of ZY corresponding to the

eigenvalue 1. Consequently, Y Zw = w where w = Y x ̸= 0 is an eigenvector of

Y Z. Multiplying by I −DE and rearranging we have

(C(λI − A)−1B +D)Ew = w

so

ε∥G(λ)∥ ≥ ∥G(λ)E∥ ≥ 1

establishing the first statement in (1.4).

Remark 1.2.2. The equivalence (1.4) also holds if we restrict E in the first state-

ment to have rank one. The proof remains unchanged. Furthermore, if, given λ,

we choose ε = ξ = ∥G(λ)∥−1 and E = ξuv∗ as in the proof, then the inequalities in

both statements hold with equality. Note that u and v are each uniquely defined up
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to a unimodular scalar if and only if the maximum singular value ξ−1 is simple.

Definition 1.2.3. Let ε ∈ R, with ε ≥ 0 and ε∥D∥ < 1, and define the spectral

value set

σε(A,B,C,D) =
∪{

σ(M(E)) : E ∈ Cp×m, ∥E∥ ≤ ε
}
.

Note that σε(A,B,C,D) ⊃ σ0(A,B,C,D) = σ(A). The following corollary of

Theorem 1.2.1 and Remark 1.2.2 is immediate.

Corollary 1.2.4. Let ε ∈ R, with ε > 0 and ε∥D∥ < 1. Then

σε(A,B,C,D)\σ(A) =
∪{

λ ∈ C\σ(A) : ∥G(λ)∥ ≥ ε−1
}

=
∪{

σ(M(E)) : E ∈ Cp×m, ∥E∥ ≤ ε, rank(E) = 1
}
.

Remark 1.2.5. Theorem 1.2.1 is implied by the more general development in

[HP05, Theorem 5.2.9], where the norm need not be the 2-norm and the admissible

perturbations E may be restricted to have a specified structure; see also [Kar03] for

the case D = 0. The basic idea of our proof is from [HP05, Lemma 5.2.7], but the

relationship between eigenvectors of M(E) and singular vectors of G(λ) revealed by

our proof and developed further below is essential for this paper. Remark 1.2.2 may

also be found in [HP05, Remark 5.2.20 (iii)]; this observation does not generally

apply when structure is imposed on E. The sets σε are called spectral value sets

in [HP05, Kar03] and are also sometimes known as structured pseudospectra. In

the case B = C = I,D = 0, the σε are called pseudospectra [TE05]. In all the

references just mentioned, the sets are defined with strict inequalities instead of the

non-strict inequalities used above. Using our definition, the set σε is compact for

fixed ε.
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Definition 1.2.6. An eigenvalue λ of A is observable if all its corresponding right

eigenvectors x (with Ax = λx, x ̸= 0) satisfy Cx ̸= 0, and it is controllable if

all its corresponding left eigenvectors y (with y∗A = λy∗, y ̸= 0) satisfy y∗B ̸= 0

[AM07, Corollary 6.9].

Remark 1.2.7. If an eigenvalue λ of A is either uncontrollable or unobservable,

that is Cx = 0 or y∗B = 0 for some right eigenvector x or left eigenvector y,

then from (1.3) we have either M(E)x = λx for all E or y∗M(E) = λy∗ for all

E. Therefore, λ is an eigenvalue of M(E) for all E, so λ ∈ σε(A,B,C,D) for

all ε and furthermore, by eigenvalue continuity, λ must be an isolated point of

σε(A,B,C,D) for all sufficiently small ε.

Next, we show that as long as E is chosen to have rank one, E(I −DE)−1 can

be simplified.

Lemma 1.2.8. Let ε ∈ R, with ε > 0 and ε∥D∥ < 1. Then for all E with ∥E∥ ≤ ε,

we have E(I−DE)−1 = (I−ED)−1E, and if E = εuv∗, where u ∈ Cp and v ∈ Cm

are arbitrary vectors with unit norm, we have

E(I −DE)−1 =
1

1− εv∗Du
E.

Proof. The proof of the first statement is immediate. For the second, by the

Sherman-Morrison-Woodbury formula [GV83], we have

E(I −DE)−1 = εuv∗(I − εDuv∗)−1 = εuv∗
(
I +

ε

1− εv∗Du
Duv∗

)
= εuv∗ +

ε2v∗Du

1− εv∗Du
uv∗ =

1

1− εv∗Du
E.
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We now show that again provided E is rank-one, there is a key relationship

between the right and left eigenvectors of M(E) and the right and left singular

vectors of G(λ).

Theorem 1.2.9. Let ε ∈ R, with ε > 0 and ε∥D∥ < 1, and suppose that u ∈ Cp

and v ∈ Cm with ∥u∥ = ∥v∥ = 1 satisfy

εG(λ)u = v and εv∗G(λ) = u∗ (1.7)

i.e., that u and v are respectively right and left singular vectors of G(λ) correspond-

ing to a singular value ε−1. Then, defining E = εuv∗, we have

M(E)x = λx and y∗M(E) = λy∗ (1.8)

with

x = ε(λI − A)−1Bu and y = ε(λI − A)−∗C∗v (1.9)

both nonzero, so that x and y are respectively right and left eigenvectors of M(E)

corresponding to the eigenvalue λ. Furthermore,

Cx+ εDu = v and B∗y + εD∗v = u (1.10)

and

u =
(
I − ε2D∗D

)−1
(B∗y + εD∗Cx) (1.11)

v =
(
I − ε2DD∗)−1

(Cx+ εDB∗y) . (1.12)

Conversely, suppose E = εuv∗ for some u ∈ Cp and v ∈ Cm with ∥u∥ = ∥v∥ = 1
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and that equation (1.8) holds with x and y nonzero. Then we can scale x and y so

that

v∗Cx+ εv∗Du = 1 and u∗B∗y + εu∗D∗v = 1 (1.13)

and so that (1.9) also holds, and, if we assume further that (1.10) holds, it follows

that (1.7) holds.

Proof. Suppose that (1.7) holds, so G(λ)E = vv∗ and hence (1.5) holds. Defining

Y = (I − DE)−1C and Z = (λI − A)−1BE as in the proof of the first part

of Theorem 1.2.1 and using the same argument given there, we have (1.6) with

x = Zv ̸= 0, proving the first statement in (1.8). Hence

x = Zv = (λI − A)−1BEv = ε(λI − A)−1Bu

giving the first part of (1.9). Furthermore, we have EG(λ) = uu∗, so

u∗E(C(λI − A)−1B +D) = u∗.

Defining Z̃ = EC(λI − A)−1 and Ỹ = B(I − ED)−1, we have u∗Z̃Ỹ = u∗, so u is

a left eigenvector of Z̃Ỹ . Hence y∗Ỹ Z̃ = y∗, with y = Z̃∗u ̸= 0 a left eigenvector

of Ỹ Z̃. Multiplying through by (λI − A) on the right, we find

y∗B(I − ED)−1EC = y∗(λI − A) (1.14)

with

y = Z̃∗u = (λI − A)−∗C∗E∗u = ε(λI − A)−∗C∗v

so y is a left eigenvector of A+B(I−ED)−1EC, and hence by Lemma 1.2.8 a left
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eigenvector of M(E). This proves the second statement in (1.8) and the second

part of (1.9). Also, (1.9) implies that

Cx = εC(λI − A)−1Bu and B∗y = εB∗(λI − A)−∗C∗v

and combining this with (1.7) we obtain (1.10). Solving (1.10) for u and v gives

(1.11) and (1.12), which are well defined as ε∥D∥ < 1. Note that the right-hand

sides of (1.11) and (1.12) must have unit norm as we assumed a priori that u and

v have unit norm.

Conversely, given (1.8), it follows that (1.6) holds, and hence using Lemma

1.2.8 we have

x = ψ(v∗Cx)(λI − A)−1Bu with ψ =
ε

1− εv∗Du

giving the first parts of (1.13) and (1.9) by scaling x so that ψv∗Cx = ε. Similarly,

we have (1.14), which implies

y = ψ̄(u∗B∗y)(λI − A)−∗C∗v

giving the second parts of (1.13) and (1.9) by scaling y so that ψ̄u∗By = ε. Note

that scaling x and y does not change the norms of u and v which are one by

assumption. It follows from (1.9) that

Cx+ εDu = εG(λ)u and B∗y + εD∗v = εG(λ)∗v.

So, if u and v satisfy (1.10), then (1.7) must hold.
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Remark 1.2.10. Theorem 1.2.9 generalizes the far more trivial Lemma 1.1 of

[GO11]. In the case D = 0, equations (1.10), (1.11) and (1.12) simplify consider-

ably to u = B∗y, v = Cx.

Remark 1.2.11. If either Cx = 0 or y∗B = 0, then λ is also an eigenvalue of

A and is either uncontrollable or unobservable. In this case, the normalization

(1.13) is not possible, given the assumption ε∥D∥ < 1, and consequently neither

the assumptions of the theorem nor its converse can hold.

1.2.1 The H∞ norm for continuous-time systems

We start by defining spectral abscissa and spectral value set abscissa.

Definition 1.2.12. The spectral abscissa of the matrix A is

α(A) = max{Re λ : λ ∈ σ(A)},

with A (Hurwitz) stable if α(A) < 0. For ε ≥ 0, the spectral value set abscissa is

αε(A,B,C,D) = max{Re λ : λ ∈ σε(A,B,C,D)} (1.15)

with α0(A,B,C,D) = α(A).

Definition 1.2.13. A rightmost point of a set S ⊂ C is a point where the maximal

value of the real part of the points in S is attained.

Remark 1.2.14. Since σε(A,B,C,D) is compact, its rightmost points, that is the

maximizers of the optimization problem in (1.15), lie on its boundary. There can
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only be a finite number of these; otherwise, the boundary would need to contain

an infinite number of points with the same real part which can be ruled out by an

argument similar to [GO11, Lemma 2.5], exploiting [HP05, Lemma 5.3.30].

Definition 1.2.15. The H∞ norm of the transfer function G for continuous-time

systems is

∥G∥c∞ = sup
δ>0

{
δ : δ = ε−1 and αε(A,B,C,D) ≥ 0

}
. (1.16)

Remark 1.2.16. The reciprocal of the H∞ norm is called the complex stability

radius [HP05, Section 5.3] (complex because complex perturbations are admitted

even if the data are real, and radius in the sense of the perturbation space, not the

complex plane). When B = C = I and D = 0 this is also known as the distance

to instability [VL85] for the matrix A.

The following lemma states an equivalent definition of the H∞ norm which is

actually the standard one:

Lemma 1.2.17.

∥G∥c∞ =

 ∞ if α(A) ≥ 0

supω∈R ∥G(iω)∥ otherwise.
(1.17)

Proof. Clearly, the supremum in (1.16) is bounded if and only if A is stable. For

stable A and sufficiently small ε, rightmost points of the spectral value set are in

the open left-half plane. If σε(A,B,C,D) does not intersect the imaginary axis

for arbitrarily large ε then we take the supremum in (1.16) to be zero as no δ > 0

satisfies the conditions, while by Corollary (1.2.4), G(iω) = 0 for all ω ∈ R and

hence the supremum in (1.17) is also zero. Otherwise, there must exist a smallest

ε̃ for which a rightmost point λ̃ in σε̃(A,B,C,D) is on the imaginary axis, and
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by choosing E to have rank one as explained in Remark 1.2.2 we have ∥E∥ = ε̃

and ∥G(λ̃)∥ = ε̃−1. Furthermore, supposing that there is another point on the

imaginary axis with a norm larger than ε̃ leads immediately to a contradiction.

The standard method to compute the H∞ norm is the Boyd-Balakrishnan-Bru-

insma-Steinbuch algorithm [BB90a, BS90], henceforth called the BBBS algorithm,

which generalizes and improves an algorithm of Byers [Bye88] for computing the

distance to instability for A. The method relies on Lemma 1.2.17: for stable A, it

needs only to maximize ∥G(iω)∥ for ω ∈ R. The key idea is that, given any δ > 0,

it is possible to determine whether or not ω ∈ R exists such that ∥G(iω)∥ = δ by

computing all eigenvalues of an associated Hamiltonian matrix and determining

whether any are imaginary. The algorithm is quadratically convergent, but the

computation of the eigenvalues and the evaluation of the norm of the transfer

matrix both require of the order of n3 operations which is not practical when n is

large. Furthermore, some implementations of the algorithm may be problematic

because small real rounding errors in the imaginary eigenvalues may result in

incorrectly concluding that there is no ω for which ∥G(iω)∥ equals a given value

δ, giving an incorrect upper bound on the H∞ norm.

Our new algorithm is not based on evaluating the norm of the transfer matrix.

Instead, it works directly with spectral value sets. The first step is to generalize the

algorithm of [GO11] for approximating the pseudospectral abscissa of a matrix to

the more general setting of the spectral value set abscissa αε(A,B,C,D) defined

in (1.15), as explained in the next section. For this we will need the following

concept.

Definition 1.2.18. A locally rightmost point of a set S ⊂ C is a point λ which is

a rightmost point of S ∩N for some neighborhood N of λ.
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We now state our main assumption:

Assumption 1.2.1. Let ε ∈ R, with ε > 0 and ε∥D∥ < 1, and let λ ̸∈ σ(A) be a

locally rightmost point of σε(A,B,C,D). Then:

1. the largest singular value ε−1 of G(λ) is simple.

2. letting u and v be corresponding right and left singular vectors and setting

E = εuv∗, the eigenvalue λ of M(E) is simple. (That λ is an eigenvalue of

M(E) follows from Theorem 1.2.9.)

We shall assume throughout the paper that Assumption 1.2.1 holds. It can be

shown by similar arguments to those used in [BLO03a, Section 2] that generically,

that is for almost all quadruples (A,B,C,D), the largest singular value of G(λ) is

simple for all λ ∈ C\σ(A).

Remark 1.2.19. In the case B = C = I,D = 0, Part 2 of the Assumption is

implied by Part 1 [GO11, Lemma 2.6].

Although we do not use the transfer matrix G(λ) as a computational tool, we

instead use it to characterize maxima of the optimization problem on the right-

hand side of (1.15). First, note that it follows from Corollary 1.2.4 that, for ε > 0,

the definition of the spectral value set abscissa in (1.15) is equivalent to

αε(A,B,C,D) = max
{
Re λ : λ ∈ σ(A) or ∥G(λ)∥ ≥ ε−1

}
. (1.18)

The set of admissible λ must include σ(A) because of the possibility that the

spectral value set σε(A,B,C,D) has isolated points. Excluding such points, we

obtain local optimality conditions for (1.18) as follows:
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Lemma 1.2.20. Under Assumption 1.2.1, a necessary condition for λ ̸∈ σ(A) to

be a local maximizer of the optimization problem in (1.18) is

∥G(λ)∥ = ε−1 and v∗C (λI − A)−2Bu ∈ R++, (1.19)

where R++ denotes the positive real numbers and u and v are respectively right and

left singular vectors corresponding to the largest singular value ε−1 of G(λ).

Proof. We have already observed that by compactness of σε(A,B,C,D), maxi-

mizers must lie on the boundary, and hence the first statement in (1.19) holds.

The standard first-order necessary condition for ζ to be a local maximizer of an

optimization problem max{f(ζ) : g(ζ) ≤ 0, ζ ∈ R2}, when f , g are continuously

differentiable and g(ζ) = 0, ∇g(ζ) ̸= 0, is the existence of a Lagrange multiplier

µ ≥ 0 such that ∇f(ζ) = µ∇g(ζ). In our case, identifying λ ∈ C with ζ ∈ R2, the

gradient of the maximization objective is the real number 1, while the constraint

1

ε
− ∥C (λI − A)−1B +D∥

is differentiable with respect to λ because of the first part of Assumption 1.2.1, and

it has gradient v∗C(λI −A)−2Bu using standard perturbation theory for singular

values [GO11, Lemma 2.3]. Defining E = εuv∗ and applying Theorem 1.2.9 we

know that x and y as defined in (1.8) are respectively right and left eigenvectors

of M(E), with inner product

y∗x = ε2v∗C(λI − A)−2Bu. (1.20)

By the second part of Assumption 1.2.1, λ is a simple eigenvalue of M(E) and so
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y∗x ̸= 0. Therefore, the constraint gradient is nonzero implying that the Lagrange

multiplier µ ≥ 0 exists with v∗C(λI − A)−2Bu = 1/µ ∈ R++.

Corollary 1.2.21. Let λ ̸∈ σ(A) be a local maximizer of the optimization prob-

lem in (1.15) and let u, v be respectively right and left singular vectors of G(λ)

corresponding to the largest singular value ε−1. Let E = εuv∗. Define x and y to

be eigenvectors of M(E) corresponding to the eigenvalue λ and scaled as in (1.9).

Then, under Assumption 1.2.1, y∗x must be real and positive.

Proof. Since the optimization problems in (1.15) and (1.18) are equivalent, the

result follows directly from Lemma 1.2.20 using (1.20).

For this reason the following definition is very useful:

Definition 1.2.22. A pair of complex vectors x and y is called RP-compatible if

∥x∥ = ∥y∥ = 1 and y∗x ∈ R++, and therefore in the interval (0, 1].

1.2.2 The H∞ norm for discrete-time systems

We have analogous definitions relevant to discrete-time systems.

Definition 1.2.23. The spectral radius of the matrix A is

α(A) = max{|λ| : λ ∈ σ(A)},

with A (Schur) stable if ρ(A) < 0. For ε ≥ 0, the spectral value set radius is

ρε(A,B,C,D) = max{|λ| : λ ∈ σε(A,B,C,D)}. (1.21)

Definition 1.2.24. An outermost point of a set S ⊂ C is a point where the

maximal value of the modulus of the points in S is attained.
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Definition 1.2.25. The H∞ norm of the transfer function G for discrete-time

systems is

∥G∥d∞ = sup
δ>0

{
δ : δ = ε−1 and ρε(A,B,C,D) ≥ 1

}
. (1.22)

The more standard equivalent definition of the H∞ norm is given by:

Lemma 1.2.26.

∥G∥d∞ =

 ∞ if ρ(A) ≥ 1

supθ∈R ∥G(eiθ)∥ otherwise.
(1.23)

We omit the proof.

There is a variant of the BBBS algorithm for computing the discrete-time H∞

norm, based on computing eigenvalues of symplectic pencils instead of Hamiltonian

matrices [HS89, GDV98].

Definition 1.2.27. A locally outermost point of a set S ⊂ C is a point λ which

is an outermost point of S ∩N for some neighborhood N of λ.

From Corollary 1.2.4, for ε > 0, the definition of the spectral value set radius

in (1.21) is equivalent to

ρε(A,B,C,D) = max
{
|λ| : λ ∈ σ(A) or ∥G(λ)∥ ≥ ε−1

}
. (1.24)

Excluding possibly isolated points in σ(A), we obtain local optimality conditions

for (1.24) as follows.

Lemma 1.2.28. Extending Assumption 1.2.1 to locally outermost points in addi-

tion to locally rightmost points, a necessary condition for λ ̸∈ σ(A) to be a local
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maximizer of the optimization problem in (1.24) is

∥G(λ)∥ = ε−1 and λ
(
v∗C (λI − A)−2Bu

)
∈ R++, (1.25)

where u and v are respectively right and left singular vectors corresponding to the

largest singular value ε−1 of G(λ).

The proof is the same as the proof of Lemma 1.2.20, except that the derivative

of the complex modulus replaces the derivative of the real part.

So, we generalize the definition of RP-compatibility as follows:

Definition 1.2.29. A pair of complex vectors x and y is called RP(λ)-compatible

if ∥x∥ = ∥y∥ = 1 and y∗x is a positive real multiple of λ.

1.3 Approximating the spectral value set abscissa

and radius

We now show how to generalize the algorithm of [GO11] to approximate the

spectral value set abscissa αε(A,B,C,D). We address the spectral value set radius

ρε(A,B,C,D) in Section 1.3.5 below. We write approximate, not compute, because

the algorithm aims to find local maximizers of the optimization problem in (1.15).

There will be no assurance that these are global maximizers, but in practice this

is very often the case, and even if it is not we obtain guaranteed lower bounds on

αε. We remark that we could easily extend the criss-cross algorithm of [BLO03a]

to compute the global optimum, but the cost would be comparable to that of the

BBBS algorithm.
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We have seen from Theorem 1.2.1 and Remark 1.2.2 that, without loss of

generality, we can restrict the perturbation matrix E ∈ Cp×m parameterizing

σε(A,B,C,D) to have rank one. The idea of the algorithm is to generate a se-

quence of rank-one perturbations with norm ε, say εukv
∗
k, k = 0, 1, 2, . . ., with

uk ∈ Cp, vk ∈ Cm and ∥uk∥ = ∥vk∥ = 1. The goal is to choose the sequence so

that M(εukv
∗
k) converges to a matrix M(E) with an eigenvalue that is a rightmost

point of σε(A,B,C,D). The primary matrix operation needed by the algorithm

is the computation of eigenvalues with largest real part and their corresponding

right and left eigenvectors, which can be done efficiently using an iterative method

assuming A is sparse and max(m, p)≪ n.

We know from Lemma 1.2.8 that

M(εukv
∗
k) = A+BFkC where Fk =

εukv
∗
k

1− εv∗kDuk
.

The first step of the algorithm is to compute the rightmost eigenvalue λ0 of A and

corresponding RP-compatible right and left eigenvectors x0, y0. Assume that λ0 is

simple, controllable and observable and consider the matrix-valued function

K(t) = A+ tBF0C = A+ tB
εu0v

∗
0

1− εv∗0Du0
C

where u0 and v0 are to be determined. Let λ(t) denote the eigenvalue of K(t)

converging to λ0. Using standard eigenvalue perturbation theory [HJ90, Theorem

6.3.12], [GO11, Lemma 2.1], we have

λ′(0) :=
dλ(t)

dt

∣∣∣∣
t=0

=
y∗0B

(
u0v∗0

1−εv∗0Du0

)
Cx0

y∗0x0
. (1.26)
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We choose (u0, v0) to maximize the real part of this expression, as this choice is

the one that moves λ(t) to the right as fast as possible as t is increased from zero.

Since x0, y0 are RP-compatible, their inner product y∗0x0 is a fixed positive real

number. Therefore, we choose u0 and v0 as maximizers of

max
u∈Cp,∥u∥=1
v∈Cm,∥v∥=1

Re

(
y∗0B

(
uv∗

1− εv∗Du

)
Cx0

)
. (1.27)

When D = 0, we obtain u0 = B∗y0/∥B∗y0∥ and v0 = Cx0/∥Cx0∥. We will discuss

the case D ̸= 0 in detail below.

Now, let us consider how to compute (uk, vk) from (uk−1, vk−1) for k = 1, 2, . . ..

The algorithm computes the rightmost eigenvalue λk of M(εuk−1v
∗
k−1) = A +

BFk−1C and corresponding RP-compatible right and left eigenvectors xk, yk. As-

sume that λk is simple, controllable and observable and consider the matrix-valued

linear function

K(t) = A+BFk−1C + tB (Fk − Fk−1)C

with t ∈ R, which satisfies K(0) = M(εuk−1v
∗
k−1) and K(1) = M(εukv

∗
k). Define

λ(t) to be the eigenvalue of K(t) that converges to λk as t → 0. Again using

standard first-order eigenvalue perturbation theory we have

λ′(0) :=
dλ(t)

dt

∣∣∣∣
t=0

=
y∗kB (Fk − Fk−1)Cxk−1

y∗k−1xk−1

(1.28)

= ε
y∗kB

(
ukv

∗
k

1−εv∗kDuk

)
Cxk

y∗kxk
− ε

y∗kB
(

uk−1v
∗
k−1

1−εv∗k−1Duk−1

)
Cxk

y∗kxk
.

The second term is fixed so we choose uk, vk to maximize the real part of the first

term; clearly, the real part of the second term is a lower bound. Since xk, yk are
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RP-compatible, their inner product y∗kxk is a fixed positive real number. Therefore,

we choose uk and vk as maximizers of

max
u∈Cp,∥u∥=1
v∈Cm,∥v∥=1

Re

(
y∗kB

(
uv∗

1− εv∗Du

)
Cxk

)
, (1.29)

an optimization problem with the same form as (1.27). When D = 0, we obtain

uk = B∗yk/∥B∗yk∥ and vk = Cxk/∥Cxk∥.

1.3.1 Solving the optimization subproblem when D ̸= 0

We address here the following unconstrained optimization problem:

max
u∈Cp,∥u∥=1
v∈Cm,∥v∥=1

Re g(u, v) (1.30)

with

g(u, v) =
g1(u, v)

g2(u, v)
, g1(u, v) = b∗uv∗c, g2(u, v) = 1− εv∗Du

which is equivalent to (1.27) when b = B∗y0 and c = Cx0 and to (1.29) when

b = B∗yk and c = Cxk. Assume furthermore that b ̸= 0 and c ̸= 0, otherwise the

optimization problem (1.30) is trivial. Note that since we assume ε∥D∥ < 1 the

denominator g2(u, v) is always nonzero.

By compactness, a maximizer must exist. Let us define the Lagrangian

L(u, v, µ, ν) = Re g(u, v)− 1

2
µ (u∗u− 1)− 1

2
ν (v∗v − 1)

where µ ∈ R, ν ∈ R are Lagrange multipliers, and impose the classical optimality

conditions. Observe that replacing g by its complex conjugate g leaves the problem
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unchanged.

Denoting the jth component of u by uj = ujR + iujI , let us consider the partial

derivatives of g with respect to ujR and ujI and impose the conditions ∂L/∂ujR = 0

and ∂L/∂ujI = 0. Since the function g(u, v) is holomorphic with respect to uj, the

Cauchy-Riemann equations yield

µujR =
∂Re g(u, v)

∂ujR
=
∂Im g(u, v)

∂ujI

µujI =
∂Re g(u, v)

∂ujI
= − ∂Im g(u, v)

∂ujR

which imply, using
∂

∂uj
=

1

2

(
∂

ujR
− i ∂

ujI

)
,

∂Re g(u, v)

uj
=

1

2
µuj and i

∂Im g(u, v)

uj
=

1

2
µuj

so that we can write

∂g(u, v)

∂uj
= µuj.

The gradients of g1 and g2 with respect to u are the row vectors

∇ug1(u, v) = v∗cb∗ and ∇ug2(u, v) = −v∗εD.

Imposing ∇ug(u, v) = µu∗ we obtain

v∗cb∗ (1− εv∗Du)− b∗uv∗c (−εv∗D)

(1− εv∗Du)2
= µu∗. (1.31)
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A right multiplication by u gives a formula for the Lagrange multiplier

µ =
b∗uv∗c

(1− εv∗Du)2
∈ R. (1.32)

At the maximal value of g(u, v), we have

Re

(
b∗uv∗c

1− εv∗Du

)
> 0 and Re (1− εv∗Du) > 0

with the first inequality holding because we may take u = b, v = c, and the second

because ε∥D∥ < 1. Therefore, we have µ > 0. Substituting (1.32) into (1.31),

dividing through by b∗uv∗c and conjugating gives

βb+ εD∗v = u with β =
1− εu∗D∗v

u∗b
. (1.33)

In order to obtain a similar formula for the gradient with respect to v we replace

g by g in (1.30), which has the same optimal solution. Doing so we obtain

∇vg1(u, v) = u∗bc∗ and ∇vg2(u, v) = 1− u∗εD∗.

Imposing ∇vg(u, v) = νv∗ we get

u∗bc∗ (1− εu∗D∗v)− c∗vu∗b (−εu∗D∗)

(1− εu∗D∗v)2
= νv∗. (1.34)

A right multiplication by v gives

ν =
c∗vu∗b

(1− εu∗D∗v)2
= µ = µ. (1.35)
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Substituting (1.35) into (1.34), conjugating and dividing through by b∗uv∗c gives

γc+ εDu = v with γ =
1− εv∗Du

v∗c
. (1.36)

We have

β

γ
=

1− εu∗D∗v

u∗b

v∗c

1− εv∗Du
=
µ|1− εu∗D∗v|2

|b∗u|2
, (1.37)

a positive real number.

Now, combining equations (1.33) and (1.36), we find

u = ∆(βb+ γεD∗c) and v = ∆̃ (γc+ βεDb)

where

∆ =
(
I − ε2D∗D

)−1
and ∆̃ =

(
I − ε2DD∗)−1

. (1.38)

Note the equivalences

D∆ = ∆̃D and ∆D∗ = D∗∆̃.

Therefore, we have

u = βb̃+ γεD∗c̃ and v = γc̃+ βεDb̃

where

b̃ = ∆b and c̃ = ∆̃c. (1.39)
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From (1.37) we can assume

γ = ρβ, with ρ > 0 (1.40)

which implies

u = β
(
b̃+ ρεD∗c̃

)
and v = β

(
ρc̃+ εDb̃

)
. (1.41)

Substituting u, v given by (1.41) into the function g(u, v) to be optimized, we

observe that the argument of β does not play any role, that is the function g

depends only on |β| whose purpose is to normalize the vectors u and v. So we can

choose β real and positive. Note also that (1.33) and (1.36) remain unchanged if

we scale u, v, β and γ by any unimodular scalar eiθ.

From (1.41) we require

0 = ∥u∥2 − ∥v∥2 = β2
(
∥b̃∥2 + ρ2ε2∥D∗c̃∥2 − ρ2∥c̃∥2 − ε2∥Db̃∥2

)

so

ρ =

√
∥b̃∥2 − ∥εDb̃∥2
∥c̃∥2 − ∥εD∗c̃∥2

. (1.42)

The last step is to choose β > 0 such that ∥u∥ = 1, which yields

β =
1

∥b̃+ ρεD∗c̃∥
. (1.43)

Substituting the optimal values (1.42)–(1.43) into (1.41) we obtain a pair (u, v) that

solves (1.30). This pair is unique up to multiplication of u and v by a unimodular

factor eiθ.
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Figure 1.1: Iterates {λk} on a simple example.

1.3.2 Basic algorithm statement

The derivation given above leads to the following algorithm. To make it well

defined, we interpret “rightmost eigenvalue” below to mean the rightmost eigen-

value with largest imaginary part, in case there is more than one with largest real

part, although in practice we make no attempt to break ties except in the case of

complex conjugate pairs of eigenvalues of real matrices. We adopt the convention

that the algorithm breaks down if it generates a rightmost eigenvalue λk which

is not simple, controllable and observable. For later use, we include as inputs to

the algorithm the scalar ε and an initial pair of RP-compatible vectors x0, y0. In

the absence of any other estimates, these should in principle be set to right and

left eigenvectors corresponding to λ0, the rightmost eigenvalue of A that is sim-

ple, controllable and observable, although checking these conditions is not actually

practical.

Algorithm SVSA0(ε, x0, y0)
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Set u0, v0 to u and v as defined by (1.41) using (1.42), (1.43), (1.39) and (1.38),

where b = B∗y0 and c = Cx0. Set F0 = εu0v
∗
0/(1− εv∗0Du0). For k = 1, 2, . . .

Let λk be the rightmost eigenvalue of A+BFk−1C, with corresponding RP-

compatible right and left eigenvectors xk and yk. Set uk, vk to u and v as

defined by (1.41) using (1.42), (1.43), (1.39) and (1.38), where b = B∗yk and

c = Cxk. Set Fk = εukv
∗
k/(1− εv∗kDuk).

Figure 1.1 shows iterates of Algorithm SVSA0 for computing the pseudospec-

tral abscissa of a simple example [HP05, Example 5.2.21] with n = 6, m = 6

and p = 1. The contours are the boundaries of the spectral value sets for ε =

0.5, 0.66, 0.83, 1.0, 8.77. In the left panel we see that the convergence of the iter-

ates for ε = 8.77 and in the right panel, a close-up view for ε = 1. In both cases

we initialize x0 and y0 to right and left eigenvectors for the rightmost eigenvalue

of A.

By construction, the sequence {Re λk} is bounded above by αε(A,B,C,D).

Also, the real part of the quantities λ′(0) in (1.26) and (1.28) are nonnegative for

all k. This is not enough to guarantee monotonicity of the sequence {Re λk};

however we discuss how to achieve monotonicity below in Section 1.3.4. First, we

characterize fixed points of the iteration described by Algorithm SVSA0.

1.3.3 Fixed points

Now denote by Tε the map that generates the pair (uk, vk) from the pair

(uk−1, vk−1) as defined by Algorithm SVSA0. Equivalently, Tε maps a rank-one

matrix uk−1v
∗
k−1 with norm one to a rank-one matrix ukv

∗
k with norm one.

Definition 1.3.1. The pair (uk−1, vk−1) is a fixed point of the map Tε if uk =
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eiθuk−1, vk = eiθvk−1 for some θ ∈ R. Equivalently, uk−1v
∗
k−1 is a fixed point of the

iteration if ukv
∗
k = uk−1v

∗
k−1. It follows that λk = λk−1 and, implicitly, that λk is

simple, controllable and observable.

Theorem 1.3.2. Assume 0 < ε∥D∥ < 1 and suppose that (u, v) is a fixed point

of Tε corresponding to the rightmost eigenvalue λ of M(εuv∗). Then G(λ) has a

singular value equal to ε−1, and furthermore, if it is the largest singular value, then

λ satisfies the first-order necessary condition for a local maximizer of (1.18) given

in (1.19).

Conversely, assume 0 < ε∥D∥ < 1 and suppose that λ ̸∈ σ(A) satisfies (1.19),

and let u and v denote unit right and left singular vectors corresponding to the

largest singular value ε−1 of G(λ). Then λ is an eigenvalue of M(εuv∗), and if it

is the rightmost eigenvalue and is simple, then (u, v) is a fixed point of Tε.

Proof. Suppose (u, v) is a fixed point. This means that u and v satisfy (1.33) and

(1.36) with b = B∗y, c = Cx, and x, y respectively right and left RP-compatible

eigenvectors of M(εuv∗). By definition of x and y, it follows that (1.8) holds

with E = εuv∗, and by replacing x and y by βx and γy respectively, we have

(1.10). Therefore, from the second part of Theorem 1.2.9, it follows that (1.7)

also holds, that is u and v are respectively right and left singular vectors of G(λ)

corresponding to the singular value ε−1, and if this is the largest singular value,

then Lemma 1.2.20 shows that the first-order optimality conditions hold, using

(1.20) and the positivity of y∗x. The latter is not changed by the scaling of x by

β and y by γ because β/γ is real and positive, as shown in (1.37).

Conversely, if λ satisfies the first-order necessary conditions then ε−1 is the

largest singular value of G(λ) and the corresponding unit right and left singular

vectors u and v satisfy the inequality in (1.19). Applying the first part of Theorem
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1.2.9 with E = εuv∗ we see that (1.8) holds for nonzero x and y defined by (1.9)

so λ is an eigenvalue of M(εuv∗), and furthermore u and v satisfy (1.10), and

therefore also (1.33) and (1.36) with β = γ = 1. Also, y∗x is real and positive

using (1.19) and (1.20). Thus, if λ is the rightmost eigenvalue of M(εuv∗) and it

is simple, then (x, y) is a fixed point of Tε. Note that Remark 1.2.11 shows that λ

must be controllable and observable.

As in [GO11, Section 4], we conjecture that the only attractive fixed points for

Algorithm SVSA0 correspond to points λ that are local maximizers of (1.18).

1.3.4 A monotonic variant

Algorithm SVSA0 does not always generate a monotonically increasing se-

quence {Re λk}. Consider the continuous matrix family

N(t) = A+BF (t)C where F (t) =
εu(t)v(t)∗

1− εv(t)∗Du(t)
(1.44)

with

u(t) =
tuk + (1− t)uk−1

∥tuk + (1− t)uk−1∥
and v(t) =

tvk + (1− t)vk−1

∥tvk + (1− t)vk−1∥
. (1.45)

The idea is that in case the rightmost eigenvalue of N(1) does not have real part

greater than that of λk, the rightmost eigenvalue of N(0) = A+BFk−1C, we may

instead choose t ∈ (0, 1) so that the rightmost eigenvalue of N(t) has this property.
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As in [GO11, Section 6], using ′ to denote differentiation with respect to t, we have

N ′(t) = B

(
εu(t)v(t)∗

1− εv(t)∗Du(t)

)′

C = N ′
1(t) +N ′

2(t)

N ′
1(t) =

1

1− εv(t)∗Du(t)
B
(
εu(t)v(t)∗

)′
C

N ′
2(t) = εBu(t)v(t)∗C

( 1

1− εv(t)∗Du(t)

)′
.

Evaluating these at t = 0, we find

N ′(0) = N ′
1(0) +N ′

2(0)

with

N ′
1(0) =

ε

1− εv∗k−1Duk−1

B
((
uk − Re(u∗kuk−1)uk−1

)
v∗k−1 +

uk−1

(
vk − Re(v∗kvk−1)vk−1

)∗)
C,

N ′
2(0) =

ε2

(1− εv∗k−1Duk−1)2

(
v∗kDuk−1 − (v∗k−1Duk−1)Re(v

∗
kvk−1) +

v∗k−1Duk − (v∗k−1Duk−1)Re(u
∗
kuk−1)

)
Buk−1v

∗
k−1C.

Now let λ(t) denote the eigenvalue of N(t) converging to λk as t → 0. From

standard eigenvalue perturbation theory

λ′(0) =
y∗kN

′(0)xk
y∗kxk

=
ψk

y∗kxk
(1.46)
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where

ψk =
ε

1− εv∗k−1Duk−1

(
(v∗k−1Cxk)

(
y∗kBuk − (y∗kBuk−1)Re(u

∗
kuk−1)

)
+ (1.47)

(y∗kBuk−1)
(
v∗kCxk − (v∗k−1Cxk)Re(v

∗
kvk−1)

))
+

+
ε2(y∗kBuk−1)(v

∗
k−1Cxk)

(1− εv∗k−1Duk−1)2

(
v∗kDuk−1 − (v∗k−1Duk−1)Re(v

∗
kvk−1) +

v∗k−1Duk − (v∗k−1Duk−1)Re(u
∗
kuk−1)

)
.

We know from the RP-compatibility of xk, yk that the denominator of (1.46) is

real and positive. Furthermore, if Re ψk < 0, we can change the sign of both uk

and vk so that Re ψk > 0. Excluding the unlikely event that Re ψk = 0, defining

uk, vk in this way guarantees that Re λ(t) > Re λk for sufficiently small t, so that

the following algorithm generates monotonically increasing {Re λk}. As before, we

say that the algorithm breaks down if it generates a rightmost eigenvalue λk that is

not simple, controllable and observable. Note however that provided x0 and y0 are

RP-compatible right and left eigenvectors corresponding to a rightmost eigenvalue

λ0 that is simple, controllable and observable, and provided that Re λ1 > Re λ0

and Re ψk ̸= 0 for all k, then for k > 1, as long as λk is simple, it must also be

controllable and observable.

Algorithm SVSA1(ε, x0, y0)

Set u0, v0 to u and v as defined by (1.41) using (1.42), (1.43), (1.39) and (1.38),

where b = B∗y0 and c = Cx0. Set F0 = εu0v
∗
0/(1 − εv∗0Du0), and let λ1 be the

rightmost eigenvalue of A+BF0C. For k = 1, 2, . . .

1. Set xk and yk to be right and left eigenvectors of A+BFk−1C corresponding

to the eigenvalue λk, normalized so they are RP-compatible. Set uk, vk to
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u and v as defined by (1.41) using (1.42), (1.43), (1.39) and (1.38), where

b = B∗yk and c = Cxk. Furthermore, compute ψk defined in (1.47). If

Re ψk < 0 then replace uk by −uk and vk by −vk. Set t = 1 and set z to the

rightmost eigenvalue of N(t) as defined in (1.44),(1.45).

2. Repeat the following zero or more times until Re z > Re λk: replace t by t/2

and set z to the rightmost eigenvalue of N(t) as defined in (1.44),(1.45).

3. Set Fk = F (t) as defined in (1.44) and set λk+1 = z.

Note that if t is always 1, then Algorithm SVSA1 generates the same iterates as

Algorithm SVSA0, and if we omit Step 2, Algorithm SVSA1 reduces to Algorithm

SVSA0.

Remark 1.3.3. In the case B = C = I, D = 0, Algorithm SVSA1 reduces to a

monotonically increasing algorithm for the pseudospectral abscissa as derived by a

similar argument in [GO11]. However, the analogous Algorithm PSA1 stated there

contains several errors: in Step 1, z should be set to the rightmost eigenvalue of

A + εyx∗; in Step 2, the stopping criterion should be Re z > Re zk; and in Step

3, zk+1, not zk, should be set to z. The errors in the algorithm statement did not

affect the experimental results, except that Table 8.2 of [GO11] should show that

the two Boeing examples need just one bisection each, not two.

Remark 1.3.4. We have established that, for sufficiently small ε, Algorithms

SVSA0 and SVSA1 converge locally to rightmost points of the spectral value set

with a linear rate of convergence. We omit the details since the proof is a rather

lengthy generalization of the development in [GO11,Section 5] but offers little ad-

ditional insight. In practice, we find that the algorithm normally converges to
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rightmost points, without assuming that ε is small, and though although conver-

gence to global rather than local maximizers of (2.16) cannot be guaranteed, this is

common in practice.

1.3.5 Approximating the spectral value set radius

Algorithms for the spectral value set radius ρε(A,B,C,D), defined in (1.21)

and (1.24), are obtained by simple variants of Algorithms SVSA0 and SVSA1.

Observe that

d (|λ(t)|2)
dt

∣∣∣∣
t=0

= 2Re
(
λ(0)λ′(0)

)
.

Thus, in order to maximize the modulus of the left-hand side of (1.26) or (1.28)

instead of the real part, we will obtain the same optimization problems (1.27) and

(1.29) as before if we simply require xk and yk to be RP(λk)-compatible, using

Definition 1.2.29. (Note the conjugate.)

Likewise, in order to ensure that the modulus of the left-hand side of (1.46)

is positive we again need only that Re ψk is positive, assuming that xk and yk

are RP(λk)-compatible. This leads to the following algorithm. To ensure that it

is well defined we say that if there is a tie for the outermost eigenvalue, the one

whose nonnegative complex argument is closest to zero is used. We say that the

algorithm breaks down if it generates an outermost eigenvalue that is not simple,

controllable and observable. In the absence of other estimates, x0 and y0 are to be

set to an RP(λ0)-compatible pair of right and left eigenvectors for the outermost

eigenvalue λ0 that is simple, controllable and observable.

Algorithm SVSR1(ε, x0, y0)

Set u0, v0 to u and v as defined by (1.41) using (1.42), (1.43), (1.39) and (1.38),
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where b = B∗y0 and c = Cx0. Set F0 = εu0v
∗
0/(1 − εv∗0Du0), and let λ1 be the

outermost eigenvalue of A+BF0C. For k = 1, 2, . . .

1. Set xk and yk to be right and left eigenvectors of A+BFk−1C corresponding

to the eigenvalue λk, normalized so they are RP(λk)-compatible. Set uk, vk

to u and v as defined by (1.41) using (1.42), (1.43), (1.39) and (1.38), where

b = B∗yk and c = Cxk. Furthermore, compute ψk defined in (1.47). If

Re ψk < 0 then replace uk by −uk and vk by −vk. Set t = 1 and set z to the

outermost eigenvalue of N(t) as defined in (1.44),(1.45).

2. Repeat the following zero or more times until |z| > |λk|: replace t by t/2 and

set z to the outermost eigenvalue of N(t) as defined in (1.44),(1.45).

3. Set Fk = F (t) as defined in (1.44) and set λk+1 = z.

Remark 1.3.5. In the case B = C = I, D = 0, Algorithm SVSR1 reduces to a

monotonically increasing algorithm for the pseudospectral radius as derived by a

similar argument in [GO11]. However, Algorithm PSR1 stated in [GO11] contains

the same errors as Algorithm PSA1 as described in Remark 1.3.3.

Let us also define Algorithm SVSR0, a variant of Algorithm SVSA0 for the

spectral value set radius, as Algorithm SVSR1 with Step 2 omitted. The fixed

point theorem for Algorithm SVSA0, Theorem 1.3.2, extends in a straightforward

way to Algorithm SVSR0, replacing “rightmost” by “outermost” and using the

first-order optimality conditions for (1.24) given in (1.25). The local convergence

results mentioned in Remark 1.3.4 also apply.
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1.4 Approximating the H∞ norm

Recall that the H∞ norm was defined for the continuous-time and discrete-time

case respectively in Sections 1.2.1 and 1.2.2.

1.4.1 The continuous-time case

We wish to compute ∥G∥c∞, defined in (1.16) and (1.17). Assume that A is

Hurwitz stable, so the norm is finite. We start by observing that since the spectral

value set abscissa αε(A,B,C,D) is a monotonically increasing function of ε, we

need only to solve the equation

f(ε) = αε(A,B,C,D) = 0 (1.48)

for ε ∈ R++. The first step is to characterize how αε depends on ε.

Theorem 1.4.1. Let λ(ε) denote the rightmost point of σε(A,B,C,D) for ε > 0,

ε∥D∥ < 1, and assume that Assumption 1.2.1 holds for all such ε. Define u(ε)

and v(ε) as right and left singular vectors with unit norm corresponding to ε−1,

the largest singular value of G(λ(ε)), and applying Theorem 1.2.9 with E(ε) =

εu(ε)v(ε)∗, define x(ε) and y(ε) by (1.8) and (1.9). Furthermore, assume that

for a given value ε̂, the rightmost point λ(ε̂) is unique. Then λ is continuously

differentiable at ε̂ and its derivative is real, with

d

dε
αε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
λ(ε̂) =

1

y(ε̂)∗x(ε̂)
∈ R++. (1.49)

Proof. For the purposes of differentiation, we identify λ ∈ C with ξ ∈ R2 as in the

proof of Lemma 1.2.20. The first part of Assumption 1.2.1 ensures that the largest

40



singular value of G(λ) is differentiable with respect to λ and that the singular

vectors v(ε) and u(ε) are well defined up to multiplication of both by a unimodular

scalar, and that E(ε) is not only well defined but differentiable with respect to ε.

The second part ensures that y(ε)∗x(ε) is nonzero, while the assumption that λ(ε̂)

is unique ensures that λ(ε) is unique in a neighborhood of ε̂ and, as an eigenvalue

of M(ε), is differentiable at ε̂ using standard eigenvalue perturbation theory. As

in the proof of Lemma 1.2.20, observe that

1

ε
− ∥C (λI − A)−1B +D∥ = 0

so differentiating this with respect to ε at ε̂ and using the chain rule yields

dλ(ε)

dε

∣∣∣∣
ε=ε̂

=
1

ε2v∗C(λ(ε)I − A)−2Bu
.

Furthermore, (1.20) follows (for λ = λ(ε)) from (1.9). Combining these with the

first-order optimality conditions for (1.18) in (1.19) gives the result.

Corollary 1.4.2. Make the same assumptions as in Theorem 1.4.1, except nor-

malize x(ε) and y(ε) so that they are RP-compatible. This is equivalent to scaling

x(ε) and y(ε) by 1/β(ε) and 1/γ(ε) respectively where these are defined as in (1.33)

and (1.36), or equivalently (1.43), (1.40) and (1.42). So

d

dε
αε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
λ(ε̂) =

1

β(ε̂)γ(ε̂)
(
y(ε̂)∗x(ε̂)

) ∈ R++. (1.50)

Remark 1.4.3. If A,B,C,D are all real then σε(A,B,C,D) is symmetric with

respect to the real axis and hence its rightmost points must either be real or part

of a conjugate pair. In the latter case, the assumption that λ(ε̂) is unique does not
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hold but the result still holds as long as there is no third rightmost point.

The derivative formula (1.50) naturally leads to a formulation of Newton’s

method for computing ∥G∥c∞. We first state this in an idealized form:

Algorithm NHC0(ε1) (Newton’s method for H∞ norm for continuous-time sys-

tems)

For j = 1, 2, . . .

1. Compute the spectral value set abscissa αεj(A,B,C,D), along with the right-

most point λj and corresponding RP-compatible right and left eigenvectors

xj, yj and scalars βj, γj defined as in (1.33) and (1.36), or equivalently (1.43),

(1.40) using (1.38), (1.39) and (1.42), where b = B∗yj and c = Cxj.

2. Set

εj+1 = εj −
(
Re λj

)
βjγj

(
(yj)∗xj

)
.

Let εopt = (∥G∥c∞)−1, so that the rightmost point of σεopt(A,B,C,D) lies on

the imaginary axis, and suppose this rightmost point is unique. It follows from

Definition 1.2.15, Assumption 1.2.1, Theorem 1.4.1 that αε(A,B,C,D) is differen-

tiable with respect to ε at ε = εopt and that the derivative is positive. Thus, the

nonzero derivative condition for Newton’s method to converge quadratically holds,

so the sequence {εj} defined by Algorithm NHC0 converges quadratically to εopt

if |ε1 − εopt| is sufficiently small.

In practice, each step of Algorithm NHC0 requires a call to Algorithm SVSA1

to compute the spectral value set abscissa via an “inner iteration” that must be

terminated appropriately, perhaps without computing αεj(A,B,C,D) very accu-

rately. Furthermore, it is clearly desirable to “warm start” this computation by
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providing as input to Algorithm SVSA1 not only the new value of ε, but also the

final right and left eigenvectors already computed for the previous value of ε, as

opposed to repeatedly initializing Algorithm SVSA1 with right and left eigenvec-

tors corresponding to a rightmost eigenvalue of A. In the absence of any other

estimates, x0 and y0 are to be set to an RP-compatible pair of right and left eigen-

vectors for the rightmost eigenvalue λ0 that is simple, controllable and observable.

Algorithm NHC1(ε1, x0, y0)

For j = 1, 2, . . .

1. Call Algorithm SVSA1(εj,xj−1,yj−1) to compute the spectral value set ab-

scissa αεj(A,B,C,D), also returning rightmost point λj, corresponding RP-

compatible right and left eigenvectors xj, yj and corresponding scalars βj,

γj defined as in (1.33) and (1.36), or equivalently (1.43), (1.40) using (1.38),

(1.39) and (1.42), where b = B∗yj and c = Cxj.

2. Set

εj+1 = εj −
(
Re λj

)
βjγj

(
(yj)∗xj

)
.

Since Newton’s method may not converge if it is not initialized near the so-

lution, it is standard practice to combine it with a bisection method to enforce

convergence. While there are many variants of Newton-bisection methods in the

literature, a good choice is the rtsafe routine [PFTV86, Hig88], a hybrid Newton-

bisection method that maintains an interval known to contain the root, bisecting

when the Newton step is either outside the interval or does not yield a sufficient

decrease in the absolute function value (in this case, |f(εj)| = |αεj(A,B,C,D)| =

|Re λj|). This safeguard is also useful in the unlikely event that f is not differ-

entiable at some values of εj. If one has nonnegative lower and upper bounds hlb
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and hub on ∥G∥c∞, then these can be used to define initial lower and upper bounds

εlb and εub on εopt by

εlb =
1

hub
≤ εopt ≤ εub =

1

hlb
.

Assuming that such bounds are not known, we use the trivial initial lower bound

εlb = 0, and for D ̸= 0, we use the initial upper bound εub = 1/∥D∥. For D = 0,

we set εub to the initial Newton step from 0, and if f(εub) < 0, we keep doubling it

until f(εub) ≥ 0. Putting all this together, we call the resulting algorithm NBHC1

(Newton-bisection method for the H∞ norm for continuous-time systems).

1.4.2 The discrete-time case

In this case, the H∞ norm is the quantity ∥G∥d∞ defined in (1.22) and (1.23).

Assume that A is Schur stable so that the norm is finite. Equation (1.48) is replaced

by

f(ε) = ρε(A,B,C,D)− 1 = 0

where, as in the continuous-time case, f is a monotonically increasing function of

ε. Defining λ(ε) as the outermost point of σε(A,B,C,D), and assuming that it is

nonzero and unique for a given value ε̂, equation (1.49) is replaced by

d

dε
ρε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
|λ(ε̂)|, d

dε
λ(ε̂) =

1

y(ε̂)∗x(ε̂)
(1.51)

when the eigenvectors are normalized by (1.9). Applying the first-order optimality

conditions for (1.24) given in (1.25), we find that the right-hand side of (1.51) is a
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multiple of λ(ε̂). Equation (1.50) is replaced by

d

dε
ρε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
|λ(ε̂)|, d

dε
λ(ε̂) =

1

β(ε̂)γ(ε̂)
(
y(ε̂)∗x(ε̂)

)
when the eigenvectors are normalized to be RP(λ(ε̂))-compatible, with the right-

hand side again a multiple of λ(ε̂). Algorithm NHC0 is replaced by:

Algorithm NHD0(ε1) (Newton’s method forH∞ norm for discrete-time systems)

For j = 1, 2, . . .

1. Compute the spectral value set radius ρεj(A,B,C,D), along with the outer-

most point λj, corresponding RP(λ
j
)-compatible right and left eigenvectors

xj, yj and corresponding scalars βj, γj defined as in (1.33) and (1.36), or

equivalently (1.43), (1.40) using (1.38), (1.39) and (1.42), where b = B∗yj

and c = Cxj.

2. Set

εj+1 = εj −
(
|λj| − 1

)
βjγj

∣∣(yj)∗xj∣∣.
This algorithm is quadratically convergent. A less idealized version is the fol-

lowing, where x0, y0 are set, in the absence of any other estimates, to right and

left eigenvectors for λ0, the outermost eigenvalue of A, normalized to be RP(λ0)-

compatible:

Algorithm NHD1(ε1, x0, y0)

45



For j = 1, 2, . . .

1. Call Algorithm SVSR1(εj, xj−1, yj−1) to compute the spectral value set

radius ρεj(A,B,C,D), also returning outermost point λj, corresponding RP

(λj)-compatible right and left eigenvectors xj, yj and corresponding scalars

βj, γj defined as in (1.33) and (1.36), or equivalently (1.43), (1.40) using

(1.38), (1.39) and (1.42), where b = B∗yj and c = Cxj.

2. Set

εj+1 = εj −
(
|λj| − 1

)
βjγj

∣∣(yj)∗xj∣∣.
This algorithm has only local convergence guarantees, but can be globalized by

combining it with the rtsafe routine, using an initial interval for ε as described

above, giving an algorithm that we call NBHD1 (Newton-bisection method for H∞

norm for discrete-time systems).

1.5 Numerical results

Matlab codes SVSAR & HINFNORM implementing the spectral value set

andH∞ norm approximating algorithms (Algorithms SVSA1, SVSR1, NBHC1 and

NBHD1) are freely available on the website http://cims.nyu.edu/∼mert/software/

hinfinity.html. We have tested this on many examples from the Compleib [Lei06]

and EigTool [Wri02a] collections. The example data and the script used to generate

the numerical examples in this section are also available on the website together

with the code.

We use the following stopping condition in Step 1 of the SVSA1 and SVSR1
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algorithms: termination takes place at iteration k ≥ 1 if

|ϕ(λk)− ϕ(λk−1)| < max(1, |ϕ(λk−1|) ftol

where ϕ is the real part or modulus function, respectively, and we use the value

ftol = 10−12. We also set the maximum number of iterations of SVSA1 and

SVSR1 to 100. The rtsafe routine, which is used to implement the NBHC1 and

NBHD1 algorithms as explained above, uses both relative and absolute tolerances.

We set the termination condition to

∣∣∣εk − εk−1

∣∣∣ ≤ max(atol, |εk−1| rtol)

where the tolerances for the relative error and absolute error are set to rtol=10−10

and atol=10−10 respectively.

1.5.1 Dense examples

We first test the algorithms on small dense problems for which we can compare

the results with a standard implementation of the BBBS algorithm for comput-

ing the H∞ norm, namely the ss/norm function in the Control Systems Tool-

box of Matlab [Mat], with tolerance 10−10. For these problems, in Algorithms

SVSA1 and SVSR1, all eigenvalues and right eigenvectors of the matrices Mk :=

M(εukvk) =M+BFkC are computed by calling the standard Matlab eigenvalue

routine eig. To compute the left eigenvectors ofMk, we make a second call to eig,

computing the right eigenvectors of the transposed matrix MT
k instead of invert-

ing the possibly ill-conditioned matrix of right eigenvectors. Once left and right
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eigenvectors are computed, they are normalized to satisfy the RP-compatibility

condition.

Compleib is a database of continuous-time control-design examples, many from

real applications, collected from the engineering literature. Each of these examples

defines an “open-loop plant”, described by a system of the form (1.1). In most

cases, this open-loop system is unstable, and hence its H∞ norm is +∞, according

to our definition (1.17). However, by designing an appropriate controller, the open-

loop system can typically be stabilized, defining a “closed-loop plant” associated

with a different system of the form (1.1): one with a finite H∞ norm. We obtained

these stabilized closed-loop systems by computing third-order controllers using the

HIFOO package [BHLO06a].

Table 1.1 compares the results of the new NBHC1 algorithm with the BBBS

algorithm for computing the H∞ norm of the closed-loop systems obtained in this

way for 17 different examples from Compleib. The columns headed n, m and p

specify the dimension of the state space and the number of outputs and inputs in

(1.1). The column headed ∥G∥c∞ shows the value of the norm computed by the new

algorithm. The column headed “diff” shows the difference between the value of

the H∞ norm computed by Algorithm NBHC1 and that obtained using ss/norm;

this is clarified further below. The mostly small values shown in this column

indicates that our algorithm converges to a global maximizer of the optimization

problem in (1.16) for all these examples with the exception of CM4, where our

algorithm converges to a local maximizer of the spectral value set and hence an

estimate of the H∞ norm which is too small. However, when Algorithm NBHC1

was initialized with an eigenvector pair corresponding to a different eigenvalue of

A (not a rightmost one) then convergence to the global maximizer was observed.
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The columns headed “ni” and “bi” show the number of Newton steps and the

number of bisection steps taken in the rtsafe routine by Algorithm NBHC1, so

ni+bi is the number of calls to Algorithm SVSA1 for different values of εj. The

first step in rtsafe is a bisection step, but after the first step, we observe that

in most of the examples only Newton steps are taken and termination takes place

rapidly (the CM4 example is an exception).

According to (1.17), for stable A the norm ∥G∥c∞ is the maximum of ∥G(λ)∥

over the imaginary axis. Algorithm NBHC1 does not verify the norm computation

explicitly, but returns a value for ε̂ for which the rightmost point λ̂ of σε̂(A,B,C,D)

is estimated to lie on the imaginary axis, and hence ε̂−1 is an estimate of the norm.

Thus, for validation purposes, we need to actually compute ∥G(iIm λ̂)∥ to obtain

a guaranteed lower bound for ∥G∥c∞, neglecting rounding errors in the computa-

tion of the largest singular value. Similarly, the BBBS algorithm implemented in

Matlab returns a value that it estimates to be the norm, along with a second

output argument, which we denote ω̂, which is the algorithm’s estimate of the

corresponding point on the imaginary axis where the maximum is attained. So,

again for validation purposes, we compute ∥G(iω̂)∥ to obtain a guaranteed lower

bound on the norm. The quantities reported in the column diff are the differ-

ences of ∥G(iIm λ̂)∥ and ∥G(iω̂)∥. When this number is positive, the new NBHC1

algorithm computed a better (larger) lower bound than the BBBS algorithm im-

plemented in Matlab while when it is negative, the new algorithm computed a

worse (lower) lower bound.

The Compleib examples correspond to physical control systems that are all

posed in continuous time. In order to create discrete-time examples, we sampled

these systems with sampling time Ts = 1 (to obtain discrete-time open-loop sys-
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tems of the form (1.2)) but these are usually not stable. So, we attempted to

stabilize these discrete-time systems with the HIFOOd package [PWM10], which

is an extension of HIFOO for discrete-time systems. In these examples, the order

of the controller was taken to be 5 except for some of the smaller dimensional

examples with n < 10 where we used a fourth order controller. Since the examples

in Table 1.1 are posed in continuous time, some of them could not be stabilized

in discrete-time by HIFOOd, so we added some new examples instead of these.

The results for these discrete-time problems are shown in Table 1.2. Again, the

mostly small numbers in the column headed “diff” indicate that Algorithm NBHD1

mostly computed globally optimal results, an exception being the AC16 example

where our algorithm apparently found a local maximizer. As previously, the New-

ton step is preferred to bisection most of the time. Note that HIFOOd usually

yields control-systems that are barely stable so these examples are quite challeng-

ing and the performance of our algorithm on randomly created examples is much

better. The validation of the results was done in the same way as explained for

the continuous-time case.

1.5.2 Sparse matrices

As in [GO11], our Matlab implementation supports three kinds of matrix

input: dense matrices, sparse matrices and function handles, which specify the

name of a Matlab file implementing matrix-vector products. In the last two

cases, we use the Matlab routine eigs, which is an interface for ARPACK, a

well-known code implementing the implicitly restarted Arnoldi method [LSY98].

Since eigs does not require Mk explicitly, but needs only the ability to do matrix-

vector products with Mk, it also accepts as input either a sparse matrix or a
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Table 1.1: Results for dense continuous-time problems from Compleib. The column
headed “diff” shows the difference between the ∥G∥c∞ norm computed by Algorithm
NBHC1 and that computed by the BBBS algorithm implemented inMatlab. The
last two columns show the number of Newton iterates and the number of bisection
steps in Algorithm NBHC1.

example n m p ||G||c∞ diff ni bi
CBM 351 2 1 2.630e− 001 −3.9e− 015 5 1
CSE2 63 32 1 2.034e− 002 −2.7e− 014 9 4
CM1 23 3 1 8.165e− 001 +0.0e+ 000 3 4
CM3 123 3 1 8.214e− 001 −8.2e− 015 6 3
CM4 243 3 1 1.445e+ 000 −1.2e− 001 2 33
HE6 23 16 6 4.929e+ 002 +0.0e+ 000 25 13
HE7 23 16 9 3.465e+ 002 +0.0e+ 000 4 1
ROC1 12 2 2 1.217e+ 000 −5.7e− 004 4 3
ROC2 13 1 4 1.334e− 001 +0.0e+ 000 4 1
ROC3 14 11 11 1.723e+ 004 +3.9e− 006 2 1
ROC4 12 2 2 2.957e+ 002 −6.8e− 004 3 1
ROC5 10 2 3 9.800e− 003 +0.0e+ 000 4 11
ROC6 8 3 3 2.576e+ 001 +0.0e+ 000 3 1
ROC7 8 3 1 1.122e+ 000 −3.2e− 010 16 1
ROC8 12 7 1 6.599e+ 000 +2.4e− 010 7 1
ROC9 9 5 1 3.294e+ 000 −2.6e− 012 5 1
ROC10 9 2 2 1.015e− 001 −4.4e− 016 4 1
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Table 1.2: Results for dense discrete-time version of problems from Compleib. The
column headed “diff” shows the difference between the ∥G∥d∞ norm computed by
Algorithm NBHD1 and that computed by the BBBS algorithm implemented in
Matlab. The last two columns show the number of Newton iterates and the
number of bisection steps in Algorithm NBHD1.

example n m p ord ||G||d∞ diff ni bi
AC5 8 4 4 4 7.626e+ 001 −1.6e− 011 2 1
AC12 8 1 3 4 1.082e+ 001 −4.4e− 010 2 3
AC15 8 6 4 4 2.369e+ 001 −7.3e− 003 2 1
AC16 8 6 4 4 1.818e+ 001 −1.1e− 001 4 3
AC17 8 4 4 4 3.001e+ 005 −2.9e− 004 2 1
REA1 8 4 4 4 7.438e+ 002 +2.0e− 008 3 1
AC1 10 2 3 5 1.500e− 001 −3.2e− 004 5 1
AC2 10 5 3 5 3.056e− 001 −3.9e− 013 4 1
AC3 10 5 5 5 1.912e+ 001 −1.1e− 009 4 1
AC6 12 7 7 5 5.294e+ 007 +5.9e+ 002 3 4
AC11 10 5 5 5 2.185e+ 007 +1.3e+ 000 2 1
ROC3 16 11 11 5 2.337e+ 001 −9.8e− 010 3 3
ROC5 12 2 3 5 3.911e+ 003 +3.5e− 007 3 1
ROC6 10 3 3 5 1.720e+ 001 −2.7e− 004 6 5
ROC7 10 3 1 5 1.109e+ 000 −1.1e− 007 8 3
ROC8 14 7 1 5 6.283e+ 004 +1.4e− 003 3 1
ROC9 11 5 1 5 2.861e+ 001 −1.6e− 003 3 1
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function handle. The last is crucial, because we must avoid computing the dense

matrixMk = A+BFkC explicitly. On the other hand, writing an efficient function

to compute matrix-vector products with Mk is straightforward, and it is a handle

for this function that we pass to eigs, which computes the largest eigenvalue with

respect to real part or modulus, respectively. Our results are summarized in Tables

1.3 and 1.4 for continuous-time and discrete-time respectively.

As in the dense case, we compute the corresponding left eigenvector of Mk

by a second call to eigs, to find the right eigenvector of the transposed matrix

MT
k . Thus, when the input to our implementation is a function handle, it must

implement matrix-vector products with AT as well as with A. The appearance of

NaN in Tables 1.3 and 1.4 means that eigs failed to compute the desired eigenvalue

to the default required accuracy.

We used the same tolerances as in the dense case: ftol = 10−12, rtol=10−10

and atol=10−10. Although we are not able to check global optimality as in the

previous section, it seems likely that globally optimal values were again computed

in many cases. As far as we know, this is the first time the H∞ norm has been

estimated for such large systems.

In Tables 1.3 and 1.4, the examples NN18 and HF1 are from Compleib; the

other examples are from EigTool. For EigTool examples, we generate B,C and D

matrices randomly. The column “shift” in Table 1.3 shows the shift applied to the

corresponding A matrices to make it (Hurwitz) stable, i.e., we add the shift term

to matrices A obtained from EigTool to make them Hurwitz stable. Similarly, the

column “scale” in Table 1.4 shows the scaling applied, i.e., we divide the matrices

A obtained from EigTool by the scale factor shown in column “scale” to make

them Schur stable. In both continuous-time and discrete-time examples, we see
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Table 1.3: Results of Algorithm NBHC1 on sparse continuous-time problems from
EigTool and Compleib. The last four columns, respectively, show the computed
∥G∥c∞ norm, the number of Newton iterates, the number of bisection iterates and
the total number of calls to the routine eigs.

example shift n m p ||G||c∞ ni bi # eigs

NN18 0 1006 2 1 1.02336 3 1 24
HF1 0 130 2 1 1.41421 3 1 23
convdiff_fd −90I 400 6 4 NaN NaN NaN NaN
dwave −I 2048 6 4 38020 4 1 21
markov −2I 5050 6 4 6205.53 2 1 19
olmstead −5I 500 6 4 504.564 3 1 18
pde −10I 2961 6 4 368.75 4 1 35
rdbrusselator −I 3200 6 4 1868.3 3 1 53
skewlap3d 0 24389 6 4 217.395 6 1 29
sparserandom −3I 10000 6 4 141905 2 1 13
supg −I 400 6 4 497.608 5 1 32
tolosa 0 4000 6 4 NaN NaN NaN NaN

that except for the most challenging pde, tolosa and conv_diff_fd examples,

the H∞ norm computation reduces to just dozens of times as much work as the

computation of the spectral abscissa or spectral radius alone.

1.6 Conclusion of the chapter

The H∞ norm of a transfer matrix of a control system is the reciprocal of

the largest value of ε such that the associated ε-spectral value set is contained in

the stability region (the left half-plane for a continuous-time system and the unit

disk for a discrete-time system). We extended an algorithm recently introduced by

Guglielmi and Overton [GO11] for approximating the maximal real part or modulus

of points in a matrix pseudospectrum to spectral value sets, characterizing its fixed

points. We then introduced a Newton-bisection method to approximate the H∞
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Table 1.4: Results of Algorithm NBHD1 on sparse discrete-time problems from
EigTool. The last four columns, respectively, show the computed ∥G∥d∞ norm, the
number of Newton iterates, the number of bisection iterates and the total number
of calls to the routine eigs.

example scale n m p ||G||d∞ ni bi # eigs

convdiff_fd 1 400 6 4 NaN NaN NaN NaN
dwave 1 2048 6 4 39026.7 4 1 22
markov 2 5050 6 4 12365.4 5 1 24
olmstead 3000 500 6 4 617.456 4 1 26
pde 10 2961 6 4 3645.62 3 9 631
rdbrusselator 120 3200 6 4 3891.82 5 1 24
skewlap3d 11000 24389 6 4 29357.9 6 1 31
sparserandom 3 10000 6 4 3.94791e+006 2 1 11
supg 1 400 6 4 499.276 5 1 78
tolosa 5000 4000 6 4 5.66293e+006 4 4 360

norm, for which each step requires optimization of the real part or the modulus

over an ε-spectral value set. The algorithm is much faster than the standard Boyd-

Balakrishnan-Bruinsma-Steinbuch algorithm to compute the H∞ norm when the

system matrices are large and sparse. The main work required by the algorithm

is the computation of the spectral abscissa or radius of a sequence of large sparse

matrices.
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Chapter 2

Explicit Solutions for Root

Optimization of a Polynomial

Family

2.1 Introduction

A fundamental general class of problems is as follows: given a set of monic

polynomials of degree n whose coefficients depend on parameters, determine a

choice for these parameters for which the polynomial is stable, or show that no

such stabilization is possible. Variations on this stabilization problem have been

studied for more than half a century and several were mentioned in [BGL95] as

being among the “major open problems in control systems theory”.

In this paper, we show that there is one important special case of the polyno-

mial stabilization problem which is explicitly solvable: when the dependence on

parameters is affine and the number of parameters is n− 1, or equivalently, when

56



there is a single affine constraint on the coefficients. In this setting, regardless

of whether the coefficients are allowed to be complex or restricted to be real, the

problem of globally minimizing the root radius (defined as the maximum of the

moduli of the roots) or root abscissa (maximum of the real parts) may be solved

efficiently, even though the minimization objective is nonconvex and not Lipschitz

continuous at minimizers. The polynomial is Schur (respectively Hurwitz) stabi-

lizable if and only if the globally minimal value of the root radius (abscissa) is less

than one (zero). This particular class of polynomial stabilization problems includes

two interesting control applications. The first is the classical static output feed-

back stabilization problem in state space with one input and m − 1 independent

outputs, where m is the system order [Che79a]. The second is a frequency-domain

stabilization problem for a controller of order m−2 [Ran89, p. 651]. In the second

case, if stabilization is not possible, then the minimal order required for stabiliza-

tion is m−1. How to compute the minimal such order in general is a long-standing

open question.

As a specific continuous-time example, consider the classical two-mass-spring

dynamical system. It was shown in [HO06] that the minimal order required for

stabilization is 2 and that the problem of maximizing the closed-loop asymptotic

decay rate in this case is equivalent to the optimization problem

min
p∈P

max
z∈C
{Re z | p(z) = 0}

where

P = {(z4 + 2z2)(x0 + x1z + z2) + y0 + y1z + y2z
2 | x0, x1, y0, y1, y2 ∈ R}.
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Thus P is a set of monic polynomials with degree 6 whose coefficients depend

affinely on 5 parameters. A construction was given in [HO06] of a polynomial

with one distinct root with multiplicity 6 and its local optimality was proved

using techniques from nonsmooth analysis. Theorem 2.3.1 below validates this

construction in a more general setting and proves global optimality.

The global minimization methods just mentioned are explained in a sequence

of theorems that we present below. Theorem 2.2.1 shows that in the discrete-

time case with real coefficients, the optimal polynomial can always be chosen to

have at most two distinct roots, regardless of n, while Theorem 2.2.6 shows that

in the discrete-time case with complex coefficients, the optimal polynomial can

always be chosen to have just one distinct root. The continuous-time case is more

subtle, because the globally infimal value of the root abscissa may not be attained.

Theorem 2.3.1 shows that if it is attained, the corresponding optimal polynomial

may be chosen to have just one distinct root, while Theorem 2.3.7 treats the case

in which the optimal value is not attained. As in the discrete-time case, two

roots play a role, but now one of them may not be finite. More precisely, the

globally optimal value of the root abscissa may be arbitrarily well approximated

by a polynomial with two distinct roots, only one of which is bounded. Finally,

Theorem 2.3.8 shows that in the continuous-time case with complex coefficients,

the optimal value is always attained by a polynomial with just one distinct root.

Our work was originally inspired by a combination of numerical experiments

and mathematical analysis of special cases reported in [BLO01, BHLO06b, HO06].

As we began investigating a more general theory, A. Rantzer drew our attention to

a remarkable 1979 Ph.D. thesis of Raymond Chen [Che79b], which in fact derived

a method to compute the globally infimal value of the abscissa in the continuous-
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time case with real coefficients. Chen also obtained some key related results for

the discrete-time case with real coefficients, as explained in detail below. However,

he did not provide generally applicable methods for constructing globally optimal

or approximately optimal solutions, indeed remarking that he was lacking such

methods [Che79b, p. 29 and p. 71]. Neither did he consider the complex case,

for which it is a curious fact that our theorems are easier to state but apparently

harder to prove than in the real case when the globally optimal value is attained.

This paper is concerned only with closed-form solutions. The problem of gen-

erating the entire root distribution of a polynomial subject to an affine constraint

can also be approached by computational methods based on value set analysis (see

[Bar93] for details). This has the advantage that it can be generalized to handle

more than one affine constraint.

The theorems summarized above are presented in Sections 2.2 and 2.3 for the

discrete-time and continuous-time cases, respectively. The algorithms implicit in

the theorems are implemented in a publicly available Matlab code. Examples il-

lustrating various cases, including the subtleties involved when the globally optimal

abscissa is not attained, are presented in Section 2.4. We make some concluding

remarks about possible generalizations in Section 2.5.

2.2 Discrete-time stability

Let ρ(p) denote the root radius of a polynomial p,

ρ(p) = max {|z| | p(z) = 0, z ∈ C} .
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The following result shows that when the root radius is minimized over monic

polynomials with real coefficients subject to a single affine constraint, the optimal

polynomial can be chosen to have at most two distinct roots (zeros), and hence at

least one multiple root when n > 2.

Theorem 2.2.1. Let B0, B1, . . . , Bn be real scalars (with B1, . . . , Bn not all zero)

and consider the affine family of monic polynomials

P = {zn + a1z
n−1 + . . .+ an−1z + an | B0 +

n∑
j=1

Bjaj = 0, ai ∈ R}.

The optimization problem

ρ∗ := inf
p∈P

ρ(p)

has a globally optimal solution of the form

p∗(z) = (z − γ)n−k(z + γ)k ∈ P

for some integer k with 0 ≤ k ≤ n, where γ = ρ∗.

Proof. Existence of an optimal solution is easy. Take any p0 ∈ P and define

P0 = {p ∈ P |ρ(p) ≤ ρ(p0)}. The set P0 is bounded and closed. Since infp∈P ρ(p) =

infp∈P0 ρ(p), optimality is attained for some p ∈ P0 ⊆ P .

We now prove the existence of an optimal solution that has the claimed struc-

ture. Let

p(z) =

n1∏
i=1

(z + ci)

n2∏
i=n1+1

(z2 + 2diz + ei)

be an optimal solution with n1 + 2(n2 − n1) = n, ci, di, ei ∈ R, ei > |di| and

ρ(p) = r. We first show that there is an optimal solution whose roots all have

60



magnitude r. Consider therefore the perturbed polynomial

p∆(z) =

n1∏
i=1

(z + ci(1 + ∆i))

n2∏
i=n1+1

(z2 + 2diz + ei(1 + ∆i))

= zn + a1(∆)zn−1 + . . .+ an−1(∆)z + an(∆),

with p∆ ∈ P . The function

L(∆) = B0 +B1a1(∆) + . . .+Bn−1an−1(∆) +Bnan(∆)

is a multilinear function from Rn2 to R and it satisfies L(0) = 0. Observe that

the case n2 = 1 can occur only if n = 1 or n = 2 and in that case the result is

easy to verify, so assume that n2 ≥ 2. Consider now a perturbation ∆j associated

with a root or a conjugate pair of roots that do not have maximal magnitude (i.e.,

1 ≤ j ≤ n1 and |cj| < r, or n1 + 1 ≤ j ≤ n2 and ej < r2), and define

µj :=
∂L

∂∆j

(0).

If µj ̸= 0 then by the implicit function theorem one can find some ∆ in a neigh-

borhood of the origin for which ∆i < 0 for i ̸= j with L(∆) = 0 and therefore for

which ρ(q∆) < ρ∗, contradicting the optimality of q. On the other hand, if µj = 0,

then, since L is linear in ∆j, we have L(0, . . . , 0,∆j, 0, . . . , 0) = L(0) = 0 for all

∆j, and so ∆j can be chosen so that the corresponding root or conjugate pair of

roots has magnitude exactly equal to r. Thus, an optimal polynomial whose roots

have equal magnitudes can always be found.

If r = 0, the result is established, so in what follows suppose that r > 0. We

need to show that all roots can be chosen to be real. We start from some optimal

61



solution whose roots have magnitude r > 0, say

p(z) =

n1∏
i=1

(z2 + 2diz + r2)

n2∏
i=1

(z + r)

n3∏
i=1

(z − r),

with di ∈ R. Consider the perturbed polynomial

p∆(z) =

n1∏
i=1

(
z2 + 2di(1 + ∆2i)z + r2(1 + ∆2i−1)

)
×

n2∏
i=1

(z + r(1 + ∆2n1+i))

n3∏
i=1

(z − r(1 + ∆2n1+n2+i))

= zn + a1(∆)zn−1 + . . .+ an−1(∆)z + an(∆),

now including a perturbation to di, so the function

L(∆) = B0 +B1a1(∆) + . . .+Bn−1an−1(∆) +Bnan(∆)

is now a multilinear function from Rn to R that satisfies L(0) = 0. Let j be an

index 1 ≤ j ≤ n1 for which dj ̸= ±r and define

µj :=
∂L

∂∆2j

(0).

If µj ̸= 0 then by the same argument as above one can find a value of ∆ in

the neighborhood of the origin for which ∆i < 0 for i ̸= 2j with L(∆) = 0

and therefore for which ρ(p∆) < r, which contradicts the optimality of p. So we

must have µj = 0. But then ∆2j can be modified as desired while preserving the

condition L(∆) = 0 and so in particular it may be chosen so that di(1+∆2j) = ±r.

Repeated application of this argument leads to a polynomial p∗(z) whose roots are

all ±r.
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Notice that p∗(z) ∈ P if and only if γ satisfies a certain polynomial equality

once k is fixed. The following corollary is a direct consequence of this fact, showing

that γ in Theorem 2.2.1 can be computed explicitly.

Corollary 2.2.2. Let γ be the globally optimal value whose existence is asserted

in Theorem 2.2.1, and consider the set

Ξ = {r ∈ R | gk(r) = 0 for some k ∈ {0, 1, . . . , n}}

where

gk(z) = B0v0 +B1v1z + . . .+Bn−1vn−1z
n−1 +Bnvnz

n

and (v0, . . . , vn) is the convolution of the vectors

((
n− k
0

)
,

(
n− k
1

)
, . . .

(
n− k
n− k

))
and

((
k

0

)
,−

(
k

1

)
, . . . (−1)k

(
k

k

))

for k = 0, . . . , n. Then, −γ is an element of Ξ with smallest magnitude.

Although Theorem 2.2.1 and Corollary 2.2.2 are both new, they are related to

results in [Che79b], as we now explain. Let

HP = {(a1, a2, . . . , an) ∈ Rn | zn + a1z
n−1 + . . .+ an ∈ P} (2.1)

be the set of coefficients of polynomials in P . The set HP is a hyperplane, by

which we mean an n− 1 dimensional affine subspace of Rn. Let

Cn
r =

{
(a1, a2, . . . , an) ∈ Rn | p(z) = zn + a1z

n−1...+ an and ρ(p) < r
}

be the set of coefficients of monic polynomials with root radius smaller than r.
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Clearly, ρ∗ < r if and only if HP ∩Cn
r ̸= ∅. The root optimization problem is then

equivalent to finding the infimum of r such that the hyperplane HP intersects the

set Cn
r . The latter set is known to be nonconvex, characterized by several algebraic

inequalities, so this would appear to be difficult. However, since Cn
r is open and

connected, it intersects a given hyperplane if and only if its convex hull intersects

the hyperplane:

Lemma 2.2.3. (Chen [Che79b, Lemma 2.1.2]; see also [Che79a, Lemma 2.1]) Let

H be a hyperplane in Rn, that is an n−1 dimensional affine subspace of Rn, and let

S ⊂ Rn be an open connected set. Then H∩S ̸= ∅ if and only if H∩conv(S) ̸= ∅.

The set conv(Cn
r ) is an open simplex so it is easy to characterize its intersection

with HP :

Theorem 2.2.4. (Chen, special case of [Che79b, Prop. 3.1.7] and also Fam and

Meditch [FM78], for the case r = 1; see also [?, Prop. 4.1.26].) We have

conv(Cn
r ) = conv(ν1, ν2, . . . , νn+1)

where the vertices

νk = {(a1, a2, . . . , an) ∈ Rn | (z − r)n−k(z + r)k = zn +
n∑

j=1

ajz
j}

are the coefficients of the polynomials (z − r)n−k(z + r)k.

Since the optimum ρ∗ is attained, the closure of conv(Cn
ρ∗) and the hyperplane

HP must have a non-empty intersection. Theorem 2.2.1 says that, in fact, the

intersection of HP with Cn
ρ∗ must contain at least one vertex of conv(Cn

ρ∗), and
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Corollary 2.2.2 explains how to find it. In contrast, Chen uses Theorem 2.2.4 to

derive a procedure (his Theorem 3.2.2) for testing whether the minimal value ρ∗ of

Theorem 2.2.1 is greater or less than a given value r (see also [Che79a, Theorem

2.6]). This could be used to define a bisection method for approximating ρ∗, but

it would not yield the optimal polynomial p∗(z). Note that the main tool used

in the proof of Theorem 2.2.1 is the implicit function theorem, in contrast to the

sequence of algebraic results leading to Theorem 2.2.4.

Remark 2.2.5. The techniques used in Theorem 2.2.1 are all local. Thus, any

locally optimal minimizer can be perturbed to yield a locally optimal minimizer of

the form (z − β)n−k(z + β)k ∈ P for some integer k, where β is the root radius

attained at the local minimizer. Furthermore, all real roots −β of the polynomials

gk in Corollary 2.2.2 define candidates for local minimizers, and while not all of

them are guaranteed to be local minimizers, those with smallest magnitude (usually

there will only be one) are guaranteed to be global minimizers.

The work of Chen [Che79b] was limited to polynomials with real coefficients.

A complex analogue of Theorem 2.2.1 is simpler to state because the optimal

polynomial may be chosen to have only one distinct root, a multiple root if n > 1.

However, the proof is substantially more complicated than for the real case and is

given in [BGMO].

Theorem 2.2.6. Let B0, B1, . . . , Bn be complex scalars (with B1, . . . , Bn not all

zero) and consider the affine family of polynomials

P = {zn + a1z
n−1 + . . .+ an−1z + an | B0 +

n∑
j=1

Bjaj = 0, ai ∈ C}.
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The optimization problem

ρ∗ := inf
p∈P

ρ(p)

has an optimal solution of the form

p∗(z) = (z − γ)n ∈ P

with −γ given by a root of smallest magnitude of the polynomial

h(z) = Bnz
n +Bn−1

(
n

n− 1

)
zn−1 + . . .+B1

(
n

1

)
z +B0.

2.3 Continuous-time stability

Let α(p) denote the root abscissa of a polynomial p,

α(p) = max {Re(z) | p(z) = 0, z ∈ C} .

We now consider minimization of the root abscissa of a monic polynomial with

real coefficients subject to a single affine constraint. In this case, the infimum may

not be attained.

Theorem 2.3.1. Let B0, B1, . . . , Bn be real scalars (with B1, . . . , Bn not all zero)

and consider the affine family of polynomials

P = {zn + a1z
n−1 + . . .+ an−1z + an | B0 +

n∑
j=1

Bjaj = 0, ai ∈ R}.
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Let k = max{j : Bj ̸= 0}. Define the polynomial of degree k

h(z) = Bnz
n +Bn−1

(
n

n− 1

)
zn−1 + . . .+B1

(
n

1

)
z +B0.

Consider the optimization problem

α∗ := inf
p∈P

α(p).

Then

α∗ = min
{
β ∈ R | h(i)(−β) = 0 for some i ∈ {0, . . . , k − 1}

}
,

where h(i) is the i-th derivative of h. Furthermore, the optimal value is attained by

a minimizing polynomial p∗ if and only if −α∗ is a root of h, that is i = 0, and in

this case we can take

p∗(z) = (z − γ)n ∈ P

with γ = α∗.

The first part of this result, the characterization of the infimal value, is due to

Chen [Che79b, Theorem 2.3.1]. Furthermore, Chen also observed the “if” part of

the second statement, showing [Che79b, p.29] that if −α∗ is a root of h (as opposed

to one of its derivatives), the optimal value α∗ is attained by the polynomial with

a single distinct root α∗. However, he noted on the same page that he did not

have a general method to construct a polynomial with an abscissa equal to a given

value α̃ > α∗. Nor did he characterize the case when the infimum is attained. We

now address both these issues.

Because the infimum may not be attained, we cannot prove Theorem 2.3.1 using
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a variant of the proof of Theorem 2.2.1. Instead, we follow Chen’s development.

Define the hyperplane of feasible coefficients as previously (see equation (2.1)). Let

Sn
ζ :=

{
(a1, a2, . . . , an) ∈ Rn | zn + a1z

n−1 + . . .+ an = 0 implies Re(z) < ζ
}

denote the set of coefficients of monic polynomials with root abscissa less than ζ,

where ζ ∈ R is a given parameter.

Definition 2.3.2. (Sn
ζ -stabilizability) A hyperplane HP ⊂ Rn is said to be Sn

ζ -

stabilizable if HP ∩ Sn
ζ ̸= ∅.

As in the root radius case, Lemma 2.2.3 shows that although Sn
ζ is a complicated

nonconvex set, a hyperplane HP is Sn
ζ -stabilizable if and only if HP intersects

convSn
ζ , a polyhedral convex cone which can be characterized as follows:

Theorem 2.3.3. (Chen [Che79b, Theorem 2.1.8]) We have

conv(Sn
ζ ) = ν + pos({ẽi}) = {ν +

n∑
i=1

riẽi | ri ≥ 0},

an open polyhedral convex cone with vertex

ν =
n∑

j=1

(
n

j

)
(−ζ)jej

and extreme rays

ẽi =
n∑

j=i

(
n− i
j − i

)
(−ζ)j−iej,

where {ej}nj=1 is the standard basis of Rn.

This leads to the following characterization of Sn
ζ -stabilizability:
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Theorem 2.3.4. (Chen, a variant of [Che79b, Theorem 2.2.2]; see also [Che79a,

Theorem 2.4]) Define the hyperplane HP as in equation (2.1), the polynomial h and

the integer k as in Theorem 2.3.1. Then the following statements are equivalent:

1. HP is Sn
ζ -stabilizable

2. There exist nonnegative integers j, j̃ with 0 ≤ j < j̃ ≤ k such that

h(j)(−ζ)h(j̃)(−ζ) < 0

where h(j)(−ζ) denotes the j-th derivative of h(z) at z = −ζ.

To prove the last part of Theorem 2.3.1, we need the following lemma.

Lemma 2.3.5. We have h(−ζ) = 0 if and only if (z − ζ)n ∈ P . Furthermore, for

i ∈ {1, 2, . . . , k − 1}, h(i)(−ζ) = 0 if and only if exactly one of the following two

conditions hold:

1. Li ∩HP = ∅ and h(−ζ) ̸= 0

2. Li ∈ HP and h(−ζ) = 0

where

Li = {ν + riẽi | ri ≥ 0}, i = 1, 2, . . . , n.

is the i-th extreme ray of the cone conv(Sn
ζ ) given in Theorem 2.3.3.

Proof. We have

h(−ζ) =
n∑

j=0

Bj

(
n

j

)
(−ζ)j = B0 + (B1, B2, . . . , Bn) · ν
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where · denotes the usual dot product in Rn. Therefore,

h(−ζ) = 0 ⇐⇒ B0 + (B1, B2, . . . , Bn) · ν = 0 (2.2)

⇐⇒ ν ∈ HP

⇐⇒ zn +
n∑

i=1

νjz
n−j = (z − ζ)n ∈ P

proves the first part of the lemma. Now, let i ∈ {1, 2, . . . , k−1}. A straightforward

calculation gives

h(i)(−ζ) =
n!

(n− i)!

n∑
j=i

Bj

(
n− i
j − i

)
(−ζ)j−i

=
n!

(n− i)!
(B1, B2, . . . , Bn) · ẽi

Hence,

h(i)(−ζ) = 0 ⇐⇒ (B1, B2, . . . , Bn) · ẽi = 0

⇐⇒ Li ∈ H := {(a1, a2, . . . , an) | − (B1, B2, . . . , Bn) · ν

+
n∑

j=1

Bjaj = 0}

If B0 = −(B1, B2, . . . , Bn) · ν, then H = HP , ν ∈ HP and from (2.2), we get

h(−ζ) = 0 (case (1)). Otherwise, the hyperplane H is parallel to HP and H∩HP =

∅, so that Li ∩ HP = ∅, and also h(−ζ) ̸= 0 (otherwise by (2.2), ν ∈ Li ∩ HP

which would be a contradiction); this is case (2).

Now we are ready to complete the proof of Theorem 2.3.1.
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Proof. Chen’s theorem [Che79b, Theorem 2.3.1] establishes the characterization

of the optimal value,

inf
p∈P

α(p) = α∗ = min{β |
k−1∏
i=0

h(i)(−β) = 0}.

Let l ∈ {0, 1, . . . , k − 1} be the smallest integer such that h(l)(−α∗) = 0. If l = 0,

then −α∗ is a root of h and by Lemma 2.3.5, p∗(z) = (z− γ)n ∈ P is an optimizer

with γ = α∗.

Suppose now that l > 0. We will show that the infimum is not attained.

Suppose the contrary, that is HP ∩ cl(Sn
α∗) ̸= ∅ so that HP ∩ cl(convSn

α∗) ̸= ∅.

Without loss of generality, assume Bk > 0 so that h(k) is the constant function

k!Bk > 0 and the derivatives h(j), j = 1, 2, . . . , k − 1 each have leading coefficient

(coefficient of zk−j) also having positive sign. By Theorem 2.3.4, h(j)(−α̃) > 0 for

any j = 1, 2, .., k and α̃ < α∗ and, in addition, h(j)(−α∗) > 0 for 0 ≤ j < l. By

continuity of h(j), we have

h(j)(−α∗)



> 0 if 0 ≤ j < l

= 0 if j = l

≥ 0 if l < j < k

> 0 if j = k

It thus follows from Theorem 2.3.4 that Hp is not Sn
α∗-stabilizable, which means

HP ∩ Sn
α∗ = ∅, or equivalently, by Lemma 2.2.3, that HP ∩ convSn

α∗ = ∅. Since

convSn
α∗ is an open set, it follows from the assumption made above that its bound-

ary intersects HP . Pick a point y ∈ HP ∩ bd(convSn
α∗). It is easy to show that HP

is a supporting hyperplane to the convex cone convSn
α∗ at the boundary point y.
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Since every hyperplane supporting a convex cone must pass through the vertex of

the cone [HUL93, A.4.2], it follows that ν ∈ HP . On the other hand, since l > 0,

Lemma 2.3.5 implies Ll ∩Hp = ∅. This is a contradiction.

Remark 2.3.6. If −β is a real root of h(z), then (z−β)n ∈ P . Such a polynomial

is often, though not always, a local minimizer of α(p), but it is a global minimizer

if and only if −β is the largest such real root and no other roots of derivatives of

h are larger than −β.

We now address the case where the infimum is not attained.

Theorem 2.3.7. Assume that −α∗ is not a root of h. Let ℓ be the smallest integer

i ∈ {1, . . . , k − 1} for which −α∗ is a root of h(i). Then, for all sufficiently small

ϵ > 0 there exists a real scalar Mϵ for which

pϵ(z) := (z −Mϵ)
m(z − (α∗ + ϵ))n−m ∈ P

where m = ℓ or ℓ+ 1, and Mϵ → −∞ as ϵ→ 0.

Proof. By Theorem 2.3.1, the optimal abscissa value α∗ is not attained. Without

loss of generality, assume α∗ = 0. Otherwise, write z = z̃ + α∗ and rewrite P as

the set of monic polynomials in z̃ with an affine constraint.

For 0 < m ≤ n, we have pϵ(z) = (z +K)m(z − ϵ)n−m ∈ P if and only if its

coefficients are real and
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0 =

(
B0 +B1

(
n−m

1

)
(−ϵ) +B2

(
n−m

2

)
(−ϵ)2 + · · ·+Bn−m(−ϵ)n−m

)
+

(
m

1

)(
B1 +B2

(
n−m

1

)
(−ϵ) +B3

(
n−m

2

)
(−ϵ)2 + · · ·Bn−m+1(−ϵ)n−m

)
K

+

(
m

2

)(
B2 +B3

(
n−m

1

)
(−ϵ) + · · ·+Bn−m+2(−ϵ)n−m

)
K2

+ · · ·+
(
Bm +Bm+1

(
n−m

1

)
(−ϵ) + · · ·+Bn(−ϵ)n−m

)
Km

= η0(ϵ) + η1(ϵ)K + · · · ηm(ϵ)Km =: fϵ(K).

Thus, pϵ ∈ P if and only ifK is a real root of fϵ, a polynomial of degreem whose

coefficients depend on ϵ. By Theorem 2.3.4, the h(j)(ϵ) have the same sign for all

ϵ > 0 and for all j ∈ {0, 1, . . . , k}, which we take to be positive. By the definiton

of ℓ, h(j)(0) > 0 for j < ℓ and h(ℓ)(0) = 0 which gives ηj(0) =
(
m
j

) h(j)(0)
n!(n−j)!

> 0 for

j < ℓ and similarly ηℓ(0) = 0. We have also

ηm(ϵ) =
n∑

j=m

Bj

(
n−m
j −m

)
(−ϵ)j−m =

(n−m)!

n!
h(m)(−ϵ) (2.3)

and

ηm−1(ϵ) = m
n∑

j=m

Bj−1

(
n−m
j −m

)
(−ϵ)j−m (2.4)

= m
(n−m)!

n!

(
(n−m+ 1)h(m−1)(−ϵ) + ϵh(m)(−ϵ)

)
. (2.5)

Let m = ℓ. We have ηℓ(ϵ) > 0 for ϵ < 0 and ηℓ(0) = 0. The polynomial ηℓ

might change sign around 0, depending on the multiplicity of 0 as a root. If 0 is

a root of ηℓ with an odd multiplicity, ηℓ(ϵ) < 0 for ϵ > 0 small enough and so the
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coefficients of fϵ have one and only one sign change. By Descartes’ rule of signs,

fϵ has one and only one root K with positive real part which must therefore be

real. Setting Mϵ = −K, we have pϵ(z) = (z − ϵ)n−m(z +K)m ∈ P as desired. If

the multiplicity is even, then the multiplicity of 0 as a root of h(ℓ) is also even by

(2.3). Then, h(ℓ+1) must have 0 as a root with odd multiplicity and h(ℓ+1) changes

sign around 0. Set m = ℓ + 1 in this case and repeat a similar argument: By

(2.3), ηm changes sign around 0, i.e. ηm < 0 for ϵ > 0 small enough. Furthermore,

from (2.5), ηm−1 > 0 for ϵ > 0, ϵ small enough. As a result, the coefficients of fϵ

have one and only one sign change, for ϵ > 0, ϵ small enough. We again get the

existence of pϵ in P with the desired structure.

Finally, let us show that Mϵ → −∞. Suppose this is not the case. Then, there

exists a sequence ϵκ ↓ 0 and a positive number R such that supκ ρ(pϵκ) ≤ R. Since

cl(Cn
R) is compact by Theorem 2.2.4, there exists a positive constant R̃ such that

all of the coefficients of the polynomial pϵκ are bounded by R̃, uniformly over κ.

By compactness, there exists a subsequence pϵκι converging to a limit p∗ pointwise.

Furthermore, p∗ ∈ P since P is closed. By continuity of the abscissa mapping,

α(p∗) = limι→∞ α(pϵκι ) = 0. This implies that the optimal abscissa is attained on

P , which is a contradiction.

Theorem 2.3.1 showed that in the real case the infimal value is not attained if

and only if the polynomial h has a derivative of any order between 1 and k−1 with

a real root to the right of the rightmost real root of h. However, it is not possible

that a derivative of h has a complex root to the right of the rightmost complex

root of h. This follows immediately from the Gauss-Lucas theorem, which states

that the roots of the derivative of a polynomial p must lie in the convex hull of

the roots of p [BLO04, Mar66]. This suggests that the infimal value of the optimal
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abscissa problem with complex coefficients is always attained at a polynomial with

a single distinct root, namely a rightmost root of h. Indeed, this is established in

the following theorem, whose proof can be found in [BGMO].

Theorem 2.3.8. Let B0, B1, . . . , Bn be complex scalars (with B1, . . . , Bn not all

zero) and consider the affine family of polynomials

P = {zn + a1z
n−1 + . . .+ an−1z + an | B0 +

n∑
j=1

Bjaj = 0, ai ∈ C}.

The optimization problem

α∗ := inf
p∈P

α(p)

has an optimal solution of the form

p∗(z) = (z − γ)n ∈ P

with −γ given by a root with largest real part of the polynomial h where

h(z) = Bnz
n +Bn−1

(
n

n− 1

)
zn−1 + . . .+B1

(
n

1

)
z +B0.

2.4 Examples

Example 2.4.1. The following simple example is from [BLO01], where it was

proved using the Gauss-Lucas theorem that p∗(z) = zn is a global optimizer of the

abscissa over the set of polynomials

P = {zn + a1z
n−1 + . . .+ an−1z + an | a1 + a2 = 0, ai ∈ C}.
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We calculate h(z) =
(
n
2

)
z(z + 2

n−1
). Theorem 2.3.1 proves global optimality over

ai ∈ R and Theorem 2.3.8 proves global optimality over ai ∈ C.

Example 2.4.2. As mentioned in Section 1, Henrion and Overton [HO06] showed

that the problem of finding a second-order linear controller that maximizes the

closed-loop asymptotic decay rate for the classical two-mass-spring system is equiv-

alent to an abscissa minimization problem for a monic polynomial of degree 6

whose coefficients depend affinely on 5 parameters, or equivalently with a single

affine constraint on the coefficients. Theorem 2.3.1 (as well as Theorem 2.3.8) es-

tablishes global optimality of the locally optimal polynomial constructed in [HO06],

namely, (z − β)6, where β = −
√
15/5.

Example 2.4.3. This is derived from a “Belgian chocolate” stabilization chal-

lenge problem of Blondel [Blo94]: given a(z) = z2 − 2δz + 1 and b(z) = z2 − 1,

find the range of real values of δ for which there exist polynomials x and y such

that deg(x) ≥ deg(y) and α(xy(ax + by)) < 0. This problem remains unsolved.

However, inspired by numerical experiments, [BHLO06b] gave a solution for δ <

δ̄ = (1/2)
√

2 +
√
2 ≈ 0.924. When x is constrained to be a monic polynomial with

degree 3 and y to be a constant, the minimization of α(xy(ax+ by)) reduces to

inf
p∈P

α(p)

where

P = {(z2 − 2δz + 1)(z3 +
2∑

k=0

wkz
k) + (z2 − 1)v | w0, w1, w2, v ∈ C}.

For nonzero fixed δ, P is a set of monic polynomials with degree 5 whose coefficients
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depend affinely on 4 parameters, or equivalently with a single affine constraint

on the coefficients. In [BHLO06b] a polynomial in P with one distinct root of

multiplicity 5 was constructed and proved to be locally optimal using nonsmooth

analysis. Theorems 2.3.1 and 2.3.8 prove its global optimality. They also apply

to the case when x is constrained to be monic with degree 4; then, as shown in

[BHLO06b], stabilization is possible for δ < δ̃ = (1/4)
√

10 + 2
√
5 ≈ 0.951.

Example 2.4.4. The polynomial achieving the minimal root radius may not be

unique. Let P = {z2 + a1z + a2 | 1 + a1 + a2 = 0, ai ∈ R}. We have

ρ∗ := inf
p∈P

ρ(p) = inf
a2∈R

ρ(z2 − (a2 + 1)z + a2) = inf
a2∈R

ρ ((z − a2)(z − 1)) = 1.

The minimal value is attained on a continuum of polynomials of the form (z −

a2)(z−1) for any −1 ≤ a2 ≤ 1 and hence minimizers are not unique. The existence

of the minimizers (z−1)2 and (z+1)(z−1) is consistent with Theorem 2.2.1. The

same example shows that the minimizer for the radius optimization problem with

complex coefficients may not be unique.

Example 2.4.5. Likewise, a polynomial achieving the minimal root abscissa may

not be unique. Let P = {z2 + a1z + a2 | a1 = 0, a2 ∈ R}. We have

α∗ = inf
p∈P

α(p) = inf
a2∈R

α(z2 + a2) = 0.

Here B0 = B2 = 0, B1 = 1. The optimum is attained at p∗(z) = z2, where −α∗ = 0

is a root of the polynomial h(z) = z, as claimed in Theorem 2.3.1. However, the

optimum is attained at a continuum of polynomials of the form z2 + a2 for any

a2 > 0.
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Example 2.4.6. In this example, the infimal root abscissa is not attained. Let

P = {z2 + a1z + a2 | a1 ∈ R and a2 = −1}. We have h(z) = z2 + 1, so −α∗ = 0

is a root of h(1) but not of h. Thus, Theorem 2.3.7 applies with ℓ = 1. Indeed

α∗ = inf
p∈P

α(p) = inf
a1∈R

α(z2 + a1z − 1)

= inf
a1∈R

max

{
−a1 −

√
a21 + 4

2
,
−a1 +

√
a21 + 4

2

}
= 0.

This infimum is not attained, but as a1 → ∞, setting ϵ =
−a1+
√

a21+4

2
→ 0 and

Mϵ =
−a1−
√

a21+4

2
→ −∞ gives (z −Mϵ)(z − ϵ) ∈ P as claimed in Theorem 2.3.7.

Example 2.4.7. Consider the family P = {z3 + a1z
2 + a2z + a3 | a1, a2 ∈

R and a3 = −1}. We have h(z) = z3 + 1, so −α∗ = 0 is a root of both h(1)

and h(2). Thus, the assumptions of Theorem 2.3.7 are again satisfied with ℓ = 1.

However, this example shows the necessity of setting m = ℓ + 1 when h(ℓ) has

a root of even multiplicity at −α∗. Setting m = ℓ = 1 is impossible since then

(z −Mϵ)
m(z − ϵ)n−m ∈ P implies Mϵ =

1
ϵ2
→ +∞ as ϵ → 0. On the other hand,

when m = ℓ+1 = 2, we have (z−Mϵ)
m(z− ϵ)n−m ∈ P with Mϵ = − 1√

ϵ
→ −∞ as

ϵ ↓ 0.

Example 2.4.8. This is a SIMO static output feedback example going back to 1975

[ABJ75]. Given a linear system ẋ = Fx + Gu, y = Hx, we wish to determine

whether there exists a control law with u = Ky stabilizing the system, i.e., so that

the eigenvalues of F +GKH are in the left half-plane. For this particular example,

the gain matrix K ≡ [w1, w2] ∈ R2×1, and the problem is equivalent to finding a

78



stable polynomial in the family

P = {(z3 − 13z) + (z2 − 5z)w1 + (z + 1)w2 | w1, w2 ∈ R}.

A very lengthy derivation in [ABJ75] based on the decidability algorithms of Tarski

and Seidenberg yields a stable polynomial p ∈ P with abscissa α(p) ≈ −0.0656. In

1979, Chen [Che79b, p.31], referring to [ABJ75], mentioned that his results show

that the infimal value of the abscissa α over all polynomials in P is approximately

−5.91, but he did not provide an optimal or nearly optimal solution. In 1999, the

same example was used to illustrate a numerical method given in [PS99], which,

after 20 iterations, yields a stable polynomial in p ∈ P with abscissa α(p) ≈

−0.0100. The methods of [ABJ75] and [PS99] both generate stable polynomials,

but their abscissa values are nowhere near Chen’s infimal value. Applying Theorem

2.3.1, we find that the rightmost real root of h is −β ≈ 5.91 and none of the

derivatives of h have larger real roots, so (z − β)3 is the global minimizer of the

abscissa in the family P . Theorem 2.3.8 shows that allowing K to be complex does

not reduce the optimal value.

Example 2.4.9. Consider the SISO system with the transfer function ([SMM92,

Example 1], [GAB08])

s2 + 15s+ 50

s4 + 5s3 + 33s2 + 79s+ 50
.

We seek a second-order controller of the form

w3s
2 + w4s+ w5

s2 + w1s+ w2
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that stabilizes the resulting closed-loop transfer function

T (s) = (s4+5s3+33s2+79s+50)(s2+w1s+w2)+(s2+15s+50)(w3s
2+w4s+w5).

Applying the software package Hifoo [BHLO06a] to locally optimize the abscissa

of T results in a stabilizing controller with α(T ) ≈ −0.6640. But since T (s) is a

monic polynomial with degree 6 depending affinely on 5 parameters, Theorems 2.3.1

and 2.3.8 apply, showing that the optimal closed-loop transfer function is (z − β)6

where β ≈ −12.0801.

More examples may be explored by downloading a publicly available1 Matlab

code implementing the constructive algorithms implicit in Theorems 2.2.1, 2.2.6,

2.3.1 and 2.3.8 as well as Corollary 2.2.2 and Theorem 2.3.7. A code generating

all the examples of this section and two other examples mentioned in [BGMO10]

is also available at the same website. In general, there does not seem to be any

difficulty obtaining an accurate globally optimal value for the root abscissa or

root radius in the real or complex case. However, even in the cases where an

optimal solution exists, the coefficients may be large, so that rounding errors in

the computed coefficients result in a large constraint residual, and the difficulty is

compounded when the optimal abscissa value is not attained and a polynomial with

an approximately optimal abscissa value is computed: hence, it is inadvisable to

choose ϵ in Theorem 2.3.7 too small. Furthermore, the multiple roots of the optimal

polynomials are not robust with respect to small perturbations in the coefficients.

Optimizing a more robust objective such as the so-called complex stability “radius”

(in the data-perturbation sense) of the polynomial may be of more practical use;

1www.cs.nyu.edu/overton/software/affpoly/
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see [BHLO06b, Section II]. Since it is not known how to compute global optima

for this problem, one might use local optimization with the starting point chosen

by first globally optimizing the root abscissa or radius respectively.

2.5 Concluding remarks

Suppose there are κ constraints on the coefficients. In this case, we conjecture,

based on numerical experiments, that there always exists an optimal polynomial

with at most κ − 1 roots having modulus less than ρ∗ or having real part less

than α∗ respectively. However, there does not seem to be a useful bound on the

number of possible distinct roots. Thus, computing global optimizers appears to

be difficult.

When there are κ constraints, we can obtain upper and lower bounds on the

optimal value as follows. Lower bounds can be obtained by solving many problems

with only one constraint, each of which is obtained from random linear combina-

tions of the prescribed κ constraints. Upper bounds can be obtained by local

optimization of the relevant objective ρ or α over an affine parametrization which

is obtained from computing the null space of the given constraints. However, the

gap between these bounds cannot be expected to be small.

The results do not extend to the more general case of an affine family of n× n

matrices depending on n− 1 parameters. For example, consider the matrix family

A(ξ) =

 ξ 1

−1 ξ

 .
This matrix depends affinely on a single parameter ξ, but its characteristic poly-
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nomial, a monic polynomial of degree 2, does not, so the results given here do not

apply. The minimal spectral radius (maximum of the moduli of the eigenvalues) of

A(ξ) is attained by ξ = 0, for which the eigenvalues are ±i. Nonetheless, experi-

ments show that it is often the case that optimizing the spectral radius or spectral

abscissa of a matrix depending affinely on parameters yields a matrix with multiple

eigenvalues, or several multiple eigenvalues with the same radius or abscissa value;

an interesting example is analyzed in [GO07].
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Chapter 3

The distance to discrete

instability and the numerical

radius

3.1 Introduction

Consider a linear dynamical system of the form

x(t+ 1) = Ax(t), x(0) = x0 ∈ Cn (3.1)

where A ∈ Cn×n. Let ρ(A) denote the spectral radius of A (largest of the modulus

of the eigenvalues of A). It is well known that the linear system (3.1) is stable if

and only if ρ(A) < 1. By stability of the system, we mean that x(t)→ 0 as t→∞

regardless of the initial value x(0). A stable system will remain stable under

sufficiently small perturbations to the entries of A. Assume that the perturbed

83



system matrix has the form A+E. The norm of the smallest perturbation necessary

to make the system unstable is called the discrete distance to instability of A and

is given by

dDI(A) = inf{||E|| : ρ(A+ E) ≥ 1},

where above and throughout this chapter, we are interested in the case ||·|| = ||·||2.

The quantity dDI is important in robustness analysis of control systems (Hinrichsen

& Pritchard, 2005). The following characterization of dDI is well known in the

literature:

dDI(A) = min
θ∈[0,2π)

σmin(A− eiθI). (3.2)

where I is the n× n identity matrix and σmin denotes the smallest singular value.

Consider the following continuous-time counterpart of the discrete-time system

(3.1)

dx(t)

dt
= Ax(t), x(0) = x0 ∈ Cn, (3.3)

where A ∈ Cn×n as before. The system (3.3) is stable if and only if α(A) < 0

where α(A) is the abscissa of A (largest real part of the eigenvalues of A). The

continuous distance to instability is defined similarly and is given by

dCI(A) = inf{||E|| : α(A+ E) ≥ 0}.

[Bye88] shows how the continuous distance to instability dCI can be computed

by solving Hamiltonian eigenvalue problems. More specifically, by [Bye88, Theo-

rem 1], we have dCI(A) equal to the smallest non-negative ρ such that the 2n× 2n
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Hamiltonian matrix

H(ρ) =

A −ρI

ρI −AH


has a pure imaginary eigenvalue, where the superscript H denotes the complex

conjugate transpose. As a consequence, the quantity dCI(A) is equal to the smallest

positive value of ρ such that the two-parameter Hamiltonian matrix H(ρ) − iωI

is singular for some value of ω ∈ R. To solve this two-parameter Hamiltonian

eigenvalue problem, Freitag & Spence [FS11] recently introduced a fast method

that extends the implicit determinant method described in [SP05]. The implicit

determinant method was originally developed to deal with one-parameter nonlinear

eigenvalue problems and goes back to the work of [GR84].

For the discrete case, computing dDI(A) involves solving generalized symplectic

eigenvalue problems rather than standard Hamiltonian eigenvalue problems. In-

deed, as follows from Lemma 3.2.1 at the start of Section 3.2, the discrete distance

dDI(A) is equal to the smallest positive value of ε such that two-parameter matrix

family P (ε) − eiθQ(ε) is singular for some value of θ ∈ R (P (ε) and Q(ε) are to

be defined in Section 3.2). A natural idea to compute dDI is to extend the implicit

determinant method to deal with generalized eigenvalue problems; however this

is not straightforward and requires a detailed analysis. In Section 3.2, we give

the background on the implicit determinant method and explain how this exten-

sion can be done. Section 3 includes our new algorithm to compute the distance

to instability, its convergence and complexity analysis and numerical experiments

that demonstrate the effectiveness of our method by comparing it with the ex-

isting Boyd-Balakrishnan type algorithm described in [HS89, Men06]. We show

that under generic assumptions, our algorithm is locally quadratically convergent.
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The local quadratic convergence of the method in [FS11] was shown under an as-

sumption. Here, we improve the results of [FS11] by proving that this assumption

holds generically. We then turn our attention in Section 3.4 to another quantity

of interest for the robust stability analysis, the numerical radius [MO05, HS89].

The numerical radius of a square matrix is a key quantity which has applications

to the analysis of the convergence of iterative solution methods for linear systems

[ALP94, Eie93], and to the stability of hyperbolic finite-difference schemes [GT82].

Furthermore, since it provides the upper bound

||Ak|| ≤ 2r(A)k

on the norm of the powers of A [GT82], the numerical radius bounds the asymptotic

behavior of the dynamical system (3.1).

For the computation of the numerical radius, two recent methods are by [HW97]

and [MO05]. The former method is based on finding a local maximum of an

eigenvalue optimization problem whose global maximum is equal to the numerical

radius. Hence, the method is not globally convergent. The latter method is the first

globally convergent method known in the literature. The quadratic convergence of

the method was mentioned in [MO05] under an assumption. Here we show that

in fact this assumption always holds and develop a cubically convergent variant of

this algorithm. The cubic method is inspired by the algorithm of [GDV98] which

was originally developed for the H∞ norm of a transfer matrix.

Notation: We use the subscripts “ε” and “θ” to denote partial derivatives

with respect to ε and θ respectively. A matrix pencil is the set of all matrices of

the form G−λH, where G,H ∈ Cn×n and λ ∈ C. A number µ ∈ C is a generalized
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eigenvalue of the pencil G−λH if µ is a root of the polynomial ψ(λ) = det(G−λH).

The 2n×2n pencil G−λH is said to be singular if det(G−λH) = 0 for all λ ∈ C;

otherwise it is said to be regular in which case it has at most 2n finite eigenvalues.

A non-zero vector x satisfying (G−λH)x = 0 is called a “generalized eigenvector”.

From now on, we shall drop the adjective “generalized” except when its absence

would be confusing.

3.2 Background and the method

We start with a result that characterizes the singular values of A− eiθI by the

eigenvalues of a matrix pencil.

Lemma 3.2.1. ([Bye88, MO05]) A − eiθI has ε as one of its singular values if

and only if the pencil Rε(λ) := P (ε)−λQ(ε) has the eigenvalue eiθ or it is singular

where

P (ε) =

−εI A

I 0

 and Q(ε) =

 0 I

AH −εI

 .
Furthermore, the pencil RH

ε (λ) = PH(ε)− λQH(ε) is symplectic.

The matrix M(ε, θ) = D(θ)Rε(e
iθ) is Hermitian for all θ [MO05], where

D(θ) =

I 0

0 −e−iθI

 and M(ε, θ) =

 −εI A− eiθI

AH − e−iθI −εI

 .
If Rε has an eigenvalue λ = eiθ, for some θ ∈ R, and the corresponding eigenvector
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x ∈ C2n is partitioned as x =

[
uT vT

]T
with u, v ∈ Cn, then

Rε(e
iθ)x = 0 ⇐⇒M(ε, θ)x = 0 ⇐⇒

 0 A− eiθI

AH − e−iθI 0


u
v

 = ε

u
v


(3.4)

⇐⇒ (A− eiθI)v = εu and (A− eiθI)Hu = εv. (3.5)

Hence, ε is a singular value of A−eiθI with left and right singular vectors u and v.

This is the idea behind the proof of Lemma 3.2.1. Define the real-valued function

g : [0, 2π)→ R

g(θ) := σmin(A− eiθI).

By simple continuity and periodicity arguments, it is easy to see that g attains

its minimum and maximum value. From (3.2), we see that the minimum value is

dDI(A). Denote the maximum value by Γ(A). From Lemma 3.2.1, we see that if

ε < dDI(A), then Rε has no eigenvalue λ of unit modulus. In fact, when ε = 0,

the set of eigenvalues of Rε, denoted by Λ(Rε), consists of the eigenvalues of A

and their mirror images with respect to the unit circle. As ε increases, the set

Λ(Rε) approaches the unit circle from both sides and reach the unit circle when

ε is exactly equal to the optimal value ϵ∗ := dDI(A). At this point, at least one

of the eigenvalues of Rϵ∗ will be of unit modulus. Let eiθ∗ be such an eigenvalue.

The angle θ∗ is a global minimizer of g (conversely, any global minimizer of g

correspond to the angle of a unit modulus eigenvalue of Rε∗). By the intermediate

value theorem, for any dDI(A) ≤ ε ≤ Γ(A), there exists a θ ∈ [0, 2π) such that
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ε = g(θ) and for such ε by Lemma 3.2.1 we conclude that Rε has a unit modulus

eigenvalue.

It is known that g(θ) is C2k (2k-times continuously differentiable) for some

integer k ≥ 1 around a local minimizer of g, admitting a Taylor series expansion

around θ∗ [GDV98]

g(θ) = ϵ∗ + β(θ − θ∗)2k +O
(
(θ − θ∗)2k+1

)
(3.6)

for some β ≥ 0. We start with an assumption that is common in the literature

[MO05, BLO03a, GO11]. This is a generic assumption that holds for almost all

matrices in Cn×n [BLO03a].

Assumption 3.2.1. At a global minimizer θ∗ of g, the smallest singular value of

A− eiθ∗I is simple.

Assumption 3.2.1 implies that g is real analytic around a global minimizer. In

addition, under Assumption 3.2.1, we have the following two mutually exclusive

cases about the shape of the graph of g around θ∗.

(C1) Rϵ∗ is singular: It is well known that almost all perturbations to a square

singular pencil makes it regular. In this sense, this is a degenerate case.

From Lemma 3.2.1, it follows that ϵ∗ is a singular value of A− eiθI for all θ.

By continuity, for θ around θ∗, ϵ∗ must be the smallest singular value. Hence,

g(θ) is a constant function around θ∗ and is equal to ϵ∗. The converse of this

statement is true as we establish in Theorem 3.2.2: If g(θ) is a constant

function around θ∗, then Rϵ∗ is singular.

(C2) Rϵ∗ is regular: The pencil Rϵ∗ has at most 2n eigenvalues. Hence, by Lemma
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3.2.1, the minimum of g can only be attained at finitely many (at most 2n)

points. This implies that Γ(A) > dDI(A) and hence g cannot be a constant

function around the minimizer(s). The representation (3.6) is valid for some

k ≥ 1 and β > 0. For some small δ > 0, since β > 0, g(θ) is a strictly

decreasing function of θ on [θ∗ − δ, θ∗] and a strictly increasing function on

[θ∗, θ∗ + δ]. Hence, ε has inverse functions θ1 : [ϵ∗, g(θ∗ − δ)] → [θ∗ − δ, θ∗]

and θ2 : [ϵ∗, g(θ∗ + δ)] → [θ∗, θ∗ + δ]. These functions have Puiseux series

expansions [Die57, p. 246], so a simple calculation shows

θ1(ε) = θ∗ − β−1/2k(ε− ϵ∗)1/2k +O(ε− ϵ∗)1/k, (3.7)

θ2(ε) = θ∗ + β−1/2k(ε− ϵ∗)1/2k +O (ε− ϵ∗)1/k . (3.8)

Note that θ∗ = θ1(ϵ∗) = θ2(ϵ∗). Using Lemma 3.2.1, it follows that eiθ1(ε) and

eiθ2(ε) are eigenvalues of Rε when ε is in the interval (ϵ∗, ϵ∗ + δ). As ε ↓ ϵ∗,

θ1(ε), θ2(ε) → θ∗ showing us that the multiplicity of eiθ∗ as an eigenvalue is

at least two and that eiθ∗ splits into two different eigenvalues eiθ1(ε) and eiθ2(ε)

as ε exceeds ϵ∗.

Since the pencil RH
ε (λ) is symplectic, the set of its eigenvalues is symmetric with

respect to the unit circle, and so is the set of eigenvalues of Rε denoted by Λ(Rε).

As ε ↑ ϵ∗, the set Λ(Rε) approaches the unit circle from both sides and touches

the unit circle when ε = ϵ∗. Since symmetric eigenvalue pairs have the same

multiplicity [Wim91, Theorem 1.3], as long as Rϵ∗ is not singular, the multiplicity

of eiθ∗ as an eigenvalue of Rϵ∗ must be an even integer. In addition, it turns out

that the multiplicity of eiθ∗ as an eigenvalue determines the curvature of g around

θ∗ as the following theorem shows.
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Theorem 3.2.2. Let Assumption 3.2.1 be satisfied and θ∗ be a global minimizer

of g. We have the following.

i) The pencil Rε∗ is singular if and only if g(θ) = ϵ∗ for θ in a neighborhood of

θ∗.

ii) If the pencil Rε∗ is regular then the multiplicity of eiθ∗ as an eigenvalue of

Rε∗ is an even positive integer. In this case, the multiplicity is equal to m if

and only if

g(θ) = ϵ∗ + cm(θ − θ∗)m +O(|θ − θ∗|m+1)

for θ around θ∗ and for some cm > 0.

Proof. A direct computation yields

detRε(e
iθ) = det(D(θ)−1M(ε, θ)) (3.9)

= det(D(θ))−1 det(M(ε, θ)) (3.10)

= (−eiθ)n det

 −εI A− eiθI

(A− eiθI)H −εI

 (3.11)

= einθ
n∏

j=1

[σj(A− eiθI)− ε][σj(A− eiθI) + ε]. (3.12)

where σ1 ≥ σ2 ≥ . . . ≥ σn = σn denotes the singular values listed by multiplicity1.

Since ϵ∗ is the minimum of g(θ), we have σj(A − eiθI) ≥ ε for all θ and j =

1, 2, . . . , n. By Assumption 3.2.1 and the continuity of the singular values, the

smallest singular value of A − eiθI is simple for θ close enough to θ∗. Thus, for θ

1Note that equation (3.12) leads to a proof of the first statement in Lemma 3.2.1.
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in a neighborhood of θ∗, we have

σ1(A− eiθI) ≥ . . . ≥ σn−1(A− eiθI) ≥ min
θ̃∈[0,2π)

σn−1(A− eiθ̃I) > σn(A− eiθI) ≥ ϵ∗.

Hence for (ε, θ) close enough to (ϵ∗, θ∗), we have

detRε(e
iθ) = 0 ⇐⇒ σn(A− eiθI) = g(θ) = ε. (3.13)

The pencil Rε∗ is singular if and only if detRϵ∗(e
iθ) = 0 for all θ in a neighbor-

hood of θ∗. Then plugging ε = ϵ∗ into (3.13) proves i). For part ii), we start by

noting that if eiθ∗ is a generalized eigenvalue of P (ϵ∗) − λQ(ϵ∗) with multiplicity

m, then by definition we have the first order expansion

detRϵ∗(e
iθ) = ĉ(eiθ − eiθ∗)m +O(|eiθ − eiθ∗|2) (3.14)

= c̃(θ − θ∗)m +O(|θ − θ∗|2) (3.15)

for some non-zero ĉ, c̃ ∈ C which holds if and only if

g(θ)− ϵ∗ = σn(A− eiθI)− ϵ∗ ≈ cm(θ − θ∗)m

for some non-zero complex constant cm, where in the last step we used the fact

from (3.12) that σj(A − eiθI) − ϵ∗ is nonzero for j < n and for θ around θ∗. The

fact that m is an even integer and cm > 0 follows from the fact that θ∗ is a global

minimizer of g(θ). This completes the proof of ii).
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From Assumption 3.2.1, (3.4) and (3.5), it follows that

dimker(Rϵ∗(e
iθ∗)) = 1 and dimker(M(ϵ∗, θ∗)) = 1. (3.16)

Furthermore, null vectors ofRϵ∗(e
iθ∗) andM(ϵ∗, θ∗) are related. Let x∗ =

[
uT∗ vT∗

]T
be a right null vector of M(ϵ∗, θ∗). Clearly, x∗ is a right null vector of Rϵ∗(e

iθ∗) =

D(θ∗)
HM(ϵ∗, θ∗) as well. Since M(ϵ∗, θ∗) is Hermitian, xH∗ is a left null vector of

M(ϵ∗, θ∗). It is easy to verify that y∗ = D(θ∗)
Hx∗ is a left null vector of R(ϵ∗, e

iθ∗).

To extend the implicit determinant method [SP05] for computing the smallest

ε such that the pencil Rε has a unit norm eigenvalue, we start with a key lemma

on which our method is based.

Lemma 3.2.3. Let Assumption 3.2.1 be satisfied and assume

cHx∗ ̸= 0 (3.17)

for some column vector c ∈ Cn×1. Then the (2n+ 1)× (2n+ 1) complex matrix

K(ε, θ) =

Rε(e
iθ) D(θ)Hc

cH 0

 (3.18)

is nonsingular at ε = ϵ∗, θ = θ∗.

Proof. Equation (3.16) and Lemma 2.8 of [Kel77] prove that K(ϵ∗, θ∗) is nonsingu-

lar if cHx∗ ̸= 0 and yH∗ D(θ∗)
Hc ̸= 0. The first inequality is satisfied by assumption

and the second inequality reduces to the first since we have y∗ = D(θ∗)
Hx∗ and

D(θ∗)D(θ∗)
H = I.

Since K(ϵ∗, θ∗) is nonsingular, so is K(ε, θ) for (ε, θ) around (ϵ∗, θ∗). Consider
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the following linear system where c ∈ Rn satisfies the condition (3.17) and (ε, θ) is

around (ϵ∗, θ∗): Rε(e
iθ) D(θ)Hc

cH 0


x(ε, θ)
f(ε, θ)

 =

0
1

 . (3.19)

It follows easily from Cramer’s Rule that

f(ε, θ) =
detRε(e

iθ)

detK(ε, θ)
. (3.20)

Since detK(ε, θ) ̸= 0 around (ϵ∗, θ∗), by Lemma 3.2.3, we have

f(ε, θ) = 0 ⇐⇒ detRε(e
iθ) = 0. (3.21)

Also, from (3.19) we have

f(ε, θ) = 0 ⇐⇒ x(ε, θ) ∈ kerRε(e
iθ) and cHx(ε, θ) = 1. (3.22)

Equation (3.21) is a characterization of the zero set of the trigonometric polynomial

detRε(e
iθ) as the zero set of the function f(ε, θ) near (ϵ∗, θ∗), an equivalence that

we will exploit in our method. The main idea of our method is to seek solutions of

f(ε, θ) = 0 (3.23)

and hence recover values of ε and θ such that Rε has the eigenvalue eiθ and then

find the corresponding eigenvector. In particular, we are looking for the smallest

such ε which is equal to dDI(A).

To see that f(ε, θ) is real, multiply the first row of (3.19) from left by the row
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vector x(ε, θ)HD(θ) to get

f(ε, θ) = −x(ε, θ)HM(ε, θ)x (3.24)

where we have again used the fact that D(θ)D(θ)H = I and cHx(ε, θ) = 1. Since

M is Hermitian, we verify from (3.24) that f is real-valued.

By multiplying (3.19) from left with the invertible matrix

D(θ) 0

0 I

, we see

that the system (3.19) is equivalent to the Hermitian system

M(ε, θ) c

cH 0


x(ε, θ)
f(ε, θ)

 =

0
1

 . (3.25)

The linear systems (3.25) and (3.19) are equivalent. For numerical computations,

we prefer to work with the Hermitian system (3.25) which has more structure.

3.2.1 The f(ε, θ) = 0 curve around (ϵ∗, θ∗)

The characterization (3.21) says that analyzing the path det(Rε(e
iθ)) = 0 in

the (ε, θ) plane is equivalent to analyzing the path f(ε, θ) = 0. This amounts to

looking for the roots of f(ε, θ) in the (ε, θ) plane. We will use Newton’s method

but local quadratic convergence of Newton’s method is guaranteed only when the

Jacobian of f(ε, θ) is nonsingular at the optimizer. Our next aim is to compute

this Jacobian and to characterize when it is singular.

Lemma 3.2.4. Let Assumption 3.2.1 be satisfied and assume (3.17) holds. Con-
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sider the real curve f(ε, θ) = 0. Then, for (ε, θ) near (ϵ∗, θ∗) we have

fε(ε, θ) = ||x(ε, θ)||2 > 0. (3.26)

Proof. Differentiating the linear system (3.25) with respect to ε, we obtain

M(ε, θ) c

cH 0


xε(ε, θ)
fε(ε, θ)

 =

x(ε, θ)
0

 (3.27)

where we used the fact that Mε(ε, θ) = −I and xH(ε, θ)c = 1. Notice from (3.25)

that when f(ε, θ) = 0, x(ε, θ)H is a left null vector of M(ε, θ). Thus multiplying

the first row from the left by x(ε, θ)H gives

fε(ε, θ) = x(ε, θ)Hx(ε, θ) = ||x(ε, θ)||2 > 0 (3.28)

where we used the fact that cHx(ε, θ) = 1.

We now turn our attention to the (first and higher order) partial derivatives of

f with respect to θ at (ϵ∗, θ∗) .

Theorem 3.2.5. Let Assumption 3.2.1 be satisfied. Then the following statements

are true.

i) In the (ε, θ) plane, near (ϵ∗, θ∗), the f(ε, θ) = 0 curve is identical with the

curve ε = g(θ).

ii) The pencil Rε∗ is regular and eiθ∗ is an eigenvalue of Rε∗ with multiplicity m
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if and only if

f ∗
θ,j :=

djf

dθj
(ϵ∗, θ∗) = 0 for 0 ≤ j < m and f ∗

θ,m =
dmf

dθm
(ϵ∗, θ∗) < 0

with the convention that f ∗
θ,0 := f(ϵ∗, θ∗).

iii) The pencil Rε∗ is singular if and only if

f ∗
θ,j = 0 for j = 0, 1, 2, . . . .

Proof. The part i) is a direct consequence of (3.21) and (3.13). For the part ii),

observe that by (3.21) we have f ∗
θ,0 = 0. Let ℓ be the smallest positive integer such

that the ℓ-th derivative is non-zero, i.e.,

f ∗
θ,j = 0 for 0 ≤ j < ℓ and f ∗

θ,ℓ ̸= 0.

Plugging ε = ϵ∗ into (3.20), we have

detRϵ∗(e
iθ) = f(ϵ∗, θ) detK(ϵ∗, θ)

for θ in a neighborhood of θ∗. Taking the j-th derivatives of both sides with respect

to θ, and evaluating it at θ = θ∗ we get

dj
(
detRϵ∗(e

iθ)
)

dθj

∣∣∣
θ=θ∗

=


0 for 0 ≤ j < ℓ

f ∗
θ,ℓ detK(ϵ∗, θ∗) for j = ℓ

(3.29)

97



In addition, from Lemma 3.2.3, we know that detK(ϵ∗, θ∗) ̸= 0 which implies

dℓ
(
detRϵ∗(e

iθ)
)

dθℓ

∣∣∣
θ=θ∗
̸= 0. (3.30)

From (3.15), (3.29) and (3.30) we get ℓ = m. It remains to prove that f ∗
θ,m < 0.

Consider the equation f(ε, θ) = 0. Since f ∗
ε ̸= 0 by Lemma 3.2.4, we can write ε as

a function of θ around θ∗ using the implicit function theorem. A simple calculus

computation leads to

ε(θ) = ϵ∗ −
f ∗
θ,m

m!
(θ − θ∗)m +O(|(θ − θ∗)|m+1).

On the other hand, from part i), we must have ε(θ) = g(θ). From Theorem 3.2.2,

we obtain

cm = −
f ∗
θ,m

m!

with cm > 0. We conclude that f ∗
θ,m < 0 and this proves part ii). The proof of

part iii) is very similar and is omitted.

Corollary 3.2.6. Under Assumption 3.2.1, we have

f ∗
θ := f ∗

θ,1 =
df

dθ
(ϵ∗, θ∗) = 0.

Remark 3.2.7. Corollary 3.2.6 can also be obtained by a direct computation as
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follows. Differentiating the linear system (3.25) with respect to θ, we obtain

M(ε, θ) c

cH 0


xθ
fθ

 =

−Mθ(θ, ε)x(ε, θ)

0

 (3.31)

where

Mθ(θ, ε) =

 0 −ieiθI

ie−iθI 0

 . (3.32)

Multiplying the first equality in (3.31) by xH∗ , the left null vector of M(ϵ∗, θ∗), and

evaluating it at (ϵ∗, θ∗), we obtain

f ∗
θ = −xH∗ Mθ(ϵ∗, θ∗)x∗ = −2 Im(eiθ∗uH∗ v∗). (3.33)

Note that we have u∗ and v∗ as the left and right singular vectors of A − eiθ∗I

corresponding to the smallest singular value g(θ∗) (see (3.5)). From the Taylor

expansion (3.6), we get

gθ(θ∗) = Im(eiθ∗uH∗ v∗) (3.34)

Combining (3.33) and (3.34) gives f ∗
θ = 0.

Figure 3.1 illustrates Theorem 3.2.5. When m = 2, the f(ε, θ) curve around

(ϵ∗, θ∗) looks like the graph of a quadratic polynomial in θ (on the left). In the

middle, the case when m > 2 is illustrated. In this case, the f(ε, θ) curve looks like

the graph of an m-th degree polynomial. Clearly, the graph moves closer to the

vertical line ε = ϵ∗ as m increases. Note that only even values of m are admitted

by Theorem 3.2.2. When Rε∗ is singular, f(ε, θ) becomes a vertical line. In this

sense, a singular pencil is behaving like the case m = ∞. In any case, we have
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Figure 3.1: f(ε, θ) = 0 curve in the (ε, θ) plane. The cases m = 2 (on the left),
m > 2 (in the middle) and when Rε∗ is singular (on the right).

f(ϵ∗, θ∗) = fθ(ϵ∗, θ∗) = 0. A natural idea to compute (ϵ∗, θ∗) is to use Newton’s

method to find a root of the nonlinear equations

F (ε, θ) =

f(ε, θ)
fθ(ε, θ)

 (3.35)

which we will discuss in the next section. Newton’s method is quadratically con-

vergent as long as the Jacobian of F at the optimizer is nonsingular. Indeed, we

will show in Section 3.3.1 that this is the case for almost all A.

3.3 Computing dDI(A)

We will use Newton’s method to compute (ϵ∗, θ∗) which is a root of F (ε, θ).

Newton’s method with a starting guess (θ(0), ε(0)) requires solving a sequence of
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linear systems

J(ε(i), θ(i))

∆ε(i)
∆θ(i)

 =F (ε(i), θ(i)) (3.36)

and setting

ε(i+1)

θ(i+1)

 =

ε(i)
θ(i)

−
∆ε(i)
∆θ(i)

 (3.37)

for i = 0, 1, 2, . . . until convergence, where the Jacobian is

J(ε(i), θ(i)) =

 fε(ε(i), θ(i)) fθ(ε
(i), θ(i))

fθε(ε
(i), θ(i)) fθθ(ε

(i), θ(i))

 . (3.38)

The values of fε(ε
(i), θ(i)), fθ(ε

(i), θ(i)) are calculated by solving the systems (3.27)

and (3.31) by LU decomposition. Similarly, the values of fθε(ε
(i), θ(i)) can be

calculated by solving the system

M(ε, θ) c

cH 0


xθε(ε, θ)
fθε(ε, θ)

 =

xθ(ε, θ)−Mθ(ε, θ)xε(ε, θ)

0

 (3.39)

obtained by differentiating (3.31) with respect to ε. Finally, fθθ(ε
(i), θ(i)) can be

calculated by solving the system

M(ε, θ) c

cH 0


xθθ(ε, θ)
fθθ(ε, θ)

 =

−Mθθ(ε, θ)x(ε, θ)− 2Mθ(ε, θ)xθ(ε, θ)

0

 (3.40)
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obtained by differentiating (3.31) with respect to θ where

Mθθ(ε, θ) =

 0 eiθI

e−iθI 0

 . (3.41)

Algorithm DDI (Newton’s method) Given (ε(0), θ(0)) and c ∈ Cn satisfying

(3.17), set i = 0.

1. Solve (3.25) and (3.31) (with ε = ε(i), θ = θ(i), using x(ε, θ) obtained in

(3.25)) for the right side of (3.31)) in order to compute

F (ε(i), θ(i)) =

f(ε(i), θ(i))
fθ(ε

(i), θ(i))

 , x(ε(i), θ(i)) and xθ(ε(i), θ(i)).

2. Solve (3.27), (3.40) and (3.39) respectively in order to find the Jacobian

J(ε(i), θ(i)) given by (3.38) (using x(ε(i), θ(i)) and xθ(ε
(i), θ(i)) computed in

Step 1).

3. Newton update: Solve (3.37) in order to get (ε(i+1), θ(i+1)).

4. Increment i, repeat Steps 1-3 until convergence.

We analyze next the convergence of this algorithm.

3.3.1 Convergence analysis

By Corollary 3.2.6, we have f ∗
θ = 0. So the Jacobian at (ϵ∗, θ∗) is

J∗ =

f ∗
ε 0

f ∗
θε f ∗

θθ
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where f ∗
θθ = f ∗

θ,2 is the second derivative with respect to θ at the optimizer. New-

ton’s method (Algorithm DDI) is locally quadratically convergent if J∗ is nonsin-

gular. From Theorem 3.2.5 and Lemma 3.2.4, we see that J∗ is nonsingular if

and only if f ∗
θθ ̸= 0. When J∗ is singular, it is known that Newton’s method gen-

erally exhibits linear convergence in practice [DKK83]. Depending on the order

of singularity, there are some linear convergence results available. Let m be the

multiplicity of eiθ∗ as an eigenvalue of Rε∗ (with the convention that m =∞ if Rε∗

is singular). As a consequence of Theorem 3.2.2, m is even if it is finite. Applying

Theorem 3.2.5, we see that the following mutually exclusive three cases arise.

(D1) m = 2: The Jacobian J(ϵ∗, θ∗) is nonsingular and Algorithm DDI has local

quadratic convergence.

(D2) m ≥ 4: We have f ∗
θ,m ̸= 0, J∗ is singular and F (ε, θ) has a singularity of order

m− 2 at (ϵ∗, θ∗) [Gri80]. It is known that in a starlike domain (that can be

made explicit) around (ϵ∗, θ∗), Newton’s method will converge linearly with

rate m−2
m−1

[Gri80].

(D3) m =∞: We have f ∗
θ,m ̸= 0 for all m ≥ 0. F (ε, θ) does not have a singularity

of finite order and J∗ is singular. Linear convergence results mentioned above

do not apply.

First, let’s consider the case (D3). We start with the observation that almost all

perturbations to a singular pencil makes it regular and a square matrix pencil

is generically regular, i.e. for almost all ε and A, the pencil Rε is not singular.

However, this does not help because we are interested in a particular value of ε,

namely ε = dDI(A) for A fixed. To show that case (D3) is degenerate, we will
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need to count the number of constraints on A and ε that are needed to make Rε

singular. Note that Rε is singular if and only if the polynomial (in λ) of degree 2n

pA,ε(λ) = det
(
P (ε)− λQ(ε)

)

is the zero polynomial. The polynomial pA,ε(λ) has 2n + 1 complex coefficients,

each of which are polynomial functions of 2n2+1 real variables corresponding to ε

and n2 complex entries of A. The vanishing coefficients of pA,ε(λ) amount to 4n+2

real-valued polynomial equations (or 2n+1 complex-valued polynomial equations).

Finally, there is one more constraint on ε, which must equal the stability radius of

A. In total, we have 2n2 + 1 real variables and 4n+ 3 equality constraints. Thus,

for n > 2, Rε∗ is generically regular. Hence, for almost all matrices A, (D3) does

not hold.

Let us show that (D1) holds for almost all matrices. It suffices to show that

case (D2) does not hold generically. The complex space of 2n × 2n matrices M2n

has real dimension 8n2. The manifold of 2n × 2n matrices with only one Jordan

block of size r and with 2n− r+1 different eigenvalues, which we denote by M2n
r ,

has real dimension of 8n2−2r+2 in M2n [Kel08]. As a consequence, for A ∈ Cn×n

fixed, the manifold

SA = {P (ε)− λQ(ε) : ε ∈ R, λ ∈ C}

of real dimension 3 will generically not intersect M2n
r for r ≥ 3. This shows that

for almost all matrices A, the pencil Rε(λ) = P (ε)−λQ(ε) does not have a Jordan

block of size ≥ 3 for any value of ε. Thus, (D2) is a degenerate case and (D1) is

the generic case. These observations lead to the following theorem.
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Theorem 3.3.1. Let n > 2 be given. For a generic matrix A ∈ Cn×n, Algorithm

DDI is locally quadratically convergent.

3.3.2 Numerical experiments

Other existing methods to compute the discrete distance dDI are the bisection

algorithm of [HS89] and the Boyd-Balakrishnan (BB) algorithm [Men06, Algo-

rithm 2], [HS89] (BB algorithm is originally developed to compute H∞ norm of a

transfer function in [BB90b] and it is adapted to compute dDI in [HS89]). The bi-

section algorithm has linear convergence, whereas the BB method is quadratically

convergent. Hence, we compare our method only with the BB algorithm.

Algorithm BB Given A, set θ ← 0, ε← σn(A− eiθI).

1. Compute the unit norm eigenvalues eiθ1 , eiθ2 , . . ., eiθj of Rε ordered so that

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θj < 2π.

2. Find the midpoints, setting βℓ =
1
2
(θℓ + θℓ+1) for ℓ < j and βj =

1
2
(θj + θ1 +

2π) mod 2π.

3. Update ε = min1≤ℓ≤j σn(A− eiβℓ).

4. Repeat until convergence.

In this section, we compare both algorithms in terms of computational cost.

Note that Algorithm BB is globally convergent, whereas Algorithm DDI is, al-

though quick, not guaranteed to find a globally optimal solution (although it does

in all our numerical tests). In order to compare these algorithms in a fair way,

inspired by the checking step introduced by Watson & He for the continuous dis-

tance to instability [HW98], we augment Algorithm DDI to a global method by
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adding a checking step that checks global optimality, and in case global optimum

is not certified, we restart it from a better initial guess. To be more precise, let ε̄

be the distance computed by Algorithm DDI. We first compute the eigenvalues of

the Rε̃−δ (by a symplectic eigenvalue decomposition (see Lemma 3.2.1)) where δ

is a small tolerance. If Rε̃−δ does not have a unit modulus eigenvalue, then global

convergence is achieved, we stop. Else, we reduce the value of ε̄ as

ε̄ = ζε̄, ζ ∈ (0, 1)

until ε̄ is small enough that Rε̄−δ does not have a unit modulus eigenvalue. Then,

restart Algorithm DDI by setting the initial values ε(0) to ε̄, θ(0) to the angle of

an outermost eigenvalue (an eigenvalue whose modulus is larger than or equal to

the modulus of the others) of Rε̄ and c to a unit norm eigenvector corresponding

to this eigenvalue. Note that such a choice of c would be our best guess (up to a

complex constant) for x∗.

In the simulations, we insert the following termination condition to the Step 4

of the Algorithm DDI: The iteration stops if i > 0 and

|ε(i+1) − ε(i+1)| ≤ tol and |F (ε(i), θ(i))| ≤ tol

for some small tolerance tol. We take tol = 10−12 and δ = 10−6. We initialize

Algorithm DDI by setting ε(0) to 0, θ(0) to the angle of an outermost eigenvalue of

A and c to a unit norm eigenvector corresponding to this eigenvalue.

We used the publicly available implementation of the BB algorithm2. Example

3.3.2 is taken from [HS89, Example 5.2] whereas the other examples are taken

2http://www.cs.nyu.edu/mengi/robuststability.html

106



from the EigTool package [Wri02b]. The experiments are made on a PC with an

i7-620M processor and 4GB of memory using Matlab Version 7.13.0.564.

The cost of the BB algorithm in each iteration consists of a 2n× 2n symplectic

eigenvalue decomposition in Step 1 and n × n SVD decompositions in Step 4,

whereas for the DDI algorithm, the main cost is, ignoring the triangular system

solves, a couple of (2n+1)× (2n+1) LU decompositions in Step 1-3 and 2n× 2n

Hamiltonian eigenvalue decomposition(s) in the checking step explained above. For

dense matrices, the cost of the (2n+1)× (2n+1) LU decomposition and the n×n

SVD decomposition are 2
3
(2n+1)3 ≈ 16

3
n3 and 20

3
n3 respectively [GVL96]. The cost

of a 2n× 2n symplectic (generalized) eigenvalue decomposition is 10
3
(2n)3 = 80

3
n3

[GVL96, p. 100] assuming the QR algorithm is used. In Tables 3.2, 3.4, 3.6, 3.8

and 3.10 the columns headed as “#LU”, “#SVD” and “#SYMP” demonstate the

number of LU decompositions, SVD decompositions and symplectic eigenvalue

decompositions needed for each algorithm respectively. In Tables 3.1, 3.3, 3.5, 3.7

and 3.9, we report fθθ in each step of the DDI algorithm. We observe that fθθ

never approaches zero, this verifies theoretically that the DDI algorithm has local

quadratic convergence in all our test examples.

Example 3.3.2. We take the A matrix to be the 7 × 7 stable matrix in [HS89,

Example 5.2], a matrix that arises in the stability analysis of a heated rod controlled

by a dead-beat controller. Table 3.1 shows the iterates of the Algorithm DDI. We

observe that the method converges fast, in a couple of iterations. Table 3.1 shows

the local quadratic convergence of the DDI algorithm. Table 3.2 shows that the cost

of BB Algorithm is approximately three times of the cost of the DDI algorithm.

Example 3.3.3. Orr-Sommerfeld matrix of EigTool [Wri02b] is a test matrix ob-
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Table 3.1: Iterates of the Algorithm DDI on Example 3.3.2

Algorithm DDI
i εi θi fθθ(εi, θi) ||F (εi, θi)||
0 0 2.118832e-01 -7.792936e-01 3.410160e-01
1 6.818395e-01 2.042892e-01 -2.635779e-02 5.717587e-03
2 6.793675e-01 -1.203319e-02 -3.149541e-02 9.143296e-04
3 6.806481e-01 -4.858668e-04 -2.986638e-02 1.698551e-05
4 6.806575e-01 -2.208443e-07 -2.984173e-02 9.258642e-09
5 6.806575e-01 -7.199569e-14 -2.984171e-02 2.745284e-15

Table 3.2: Comparison of algorithms for Example 3.3.2

Method #LU #SVD #SYMP
BB 0 16 3
IDM 6 0 1

tained by the discretization of the Orr-Sommerfeld operator. Here we take A to be

the Orr-Sommerfeld matrix of dimension 200×200 (divided) scaled by 50000. The

scaling is necessary for making A stable. Table 3.3 shows quadratic convergence of

the DDI algorithm. Table 3.4 shows that high number of symplectic eigenvalue de-

compositions make the BB algorithm slower in this case whereas the DDI algorithm

is again much faster.

Example 3.3.4. The Tolosa matrix arises in the stability analysis of a model of an

Table 3.3: Iterates of the Algorithm DDI on Example 3.3.3

Algorithm DDI
i εi θi fθθ(εi, θi) ||F (εi, θi)||
0 0 -3.141593e+000 -2.420602e+000 3.334017e-003
1 6.668033e-003 -3.141593e+000 -1.111981e+000 9.971928e-009
2 6.668033e-003 -3.141593e+000 -1.111981e+000 2.352849e-016
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Table 3.4: Comparison of algorithms for Example 3.3.3

Method #LU #SVD #SYMP
BB 0 36 7
IDM 3 0 1

Table 3.5: Iterates of the Algorithm DDI on Example 3.3.4

Algorithm DDI
i εi θi fθθ(εi, θi) ||F (εi, θi)||
0 0 1.873922e+000 -5.631099e-003 2.887954e-004
1 5.705540e-004 1.881527e+000 -1.747326e-003 2.949183e-005
2 5.696610e-004 1.898392e+000 -1.730629e-003 2.792801e-007
3 5.701565e-004 1.898490e+000 -1.728859e-003 1.506027e-010
4 5.701565e-004 1.898490e+000 -1.728859e-003 8.786281e-018

airplane in flight. Here, A is the 1090×1090 matrix from EigTool [Wri02b] divided

by 2000 to make the Tolosa matrix stable. Tables 3.5 and 3.6 demonstrate the

results. For this example the DDI algorithm is much faster since the BB algorithm

requires many SVD decompositions.

Example 3.3.5. The matrix markov_demo(30) is a 465 × 465 example that is a

Markov chain transition matrix for a random walk on a 30 by 30 triangular lattice,

we choose A to be this matrix divided by 2 to make the transition matrix stable.

Table 3.7 shows the iterates of the DDI algorithm. Table 3.8 demonstrates that

Table 3.6: Comparison of algorithms for Example 3.3.4

Method #LU #SVD #SYMP
BB 0 459 6
IDM 5 0 1
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Table 3.7: Newton Iterates on Example 3.3.5

Algorithm DDI
i εi θi fθθ(εi, θi) ||F (εi, θi)||
0 0 0 -1.517494e+000 2.371689e-001
1 4.743378e-001 0 -2.162368e-001 8.189826e-017
2 4.743378e-001 0 -2.162368e-001 1.183417e-017

Table 3.8: Comparison of algorithms for Example 3.3.5

Method #LU #SVD #SYMP
BB 0 19 2
IDM 2 0 1

DDI is faster more than a factor of 2.

Example 3.3.6. Here, we set A = pde_demo(900)/10. The pde_demo(900) ex-

ample is a 900 ×900 matrix obtained by a five-point central finite difference dis-

cretization of a two-dimensional variable-coefficient linear elliptic equation. Tables

3.9 and 3.10 demonstrate the results showing that DDI is at least 7 times faster.

Table 3.9: Iterates of the Algorithm DDI on Example 3.3.6

Algorithm DDI
i εi θi fθθ(εi, θi) ||F (εi, θi)||
0 0 1.810990e-001 -1.799665e+001 7.623228e-002
1 1.795854e-002 1.768948e-001 -4.518592e+000 5.441128e-002
2 1.679771e-002 1.652988e-001 -3.192297e+000 6.395900e-003
3 1.731956e-002 1.620758e-001 -2.637687e+000 1.354115e-003
4 1.732250e-002 1.615521e-001 -2.603736e+000 9.504772e-006
5 1.732309e-002 1.615463e-001 -2.603017e+000 3.116738e-009
6 1.732309e-002 1.615463e-001 -2.603017e+000 1.140411e-016
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Table 3.10: Comparison of algorithms for Example 3.3.6

Method #LU #SVD #SYMP
BB 0 59 7
IDM 7 0 1

3.4 Computing the numerical radius

The numerical radius r(A) of a square matrix A admits the following well-

known characterization

r(A) = max
θ∈[0,2π)

λmaxH(Aeiθ)

where H(Aeiθ) := 1
2
(Aeiθ+AHe−iθ) is the Hermitian part of Aeiθ and λmaxH(Aeiθ)

denotes the largest eigenvalue of H(Aeiθ) (whose eigenvalues are all real). Hence,

computing r(A) amounts to maximizing the objective function p : [0, 2π) → R

where

p(θ) = λmaxH(Aeiθ)

is a piecewise smooth function.

The first globally convergent algorithm for numerical radius is the Mengi-

Overton (MO) algorithm [MO05]. This algorithm is an extension of the BB algo-

rithm [BB90b] to the numerical radius. Here we sketch the algorithm; the details

can be found in [Men06]. The MO algorithm produces increasing estimates rj,

j = 1, 2, . . . that converge to r(A). Given an estimate rj, at the first phase we find

the intervals Ij+1
1 , Ij+1

2 , · · · , Ij+1
mj+1 on which p is strictly bigger than the current

estimate rj. This phase is accomplished by finding the unit norm eigenvalues of
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the symplectic pencil

Wα(λ) :=

2αI −AH

I 0

− λ
A 0

0 I


for α = rj, followed by several eigenvalue decompositions of order 2n as a checking

step. In the second phase, p is evaluated at the midpoints of these intervals and the

maximum value observed is taken as the next estimate rj+1. As long as no singular

pencils are encountered, the algorithm does not break down and the iterates rj are

strictly increasing.

The quadratic convergence of this algorithm was proved in [MO05] under an

assumption that holds generically. Here we show that in fact the assumption always

holds. We start by showing some regularity properties around a local maximizer

of p.

Consider the function T : R→ Cn×n

T (θ) = H(Aeiθ).

Note that T (θ) is Hermitian for all θ ∈ R and is an analytic function of θ. By

[GLR82, Theorem S6.3] (see also [Kat82, Theorem II-§6.1] or [Kat82, Theorem

II-§1.10]), there exist real-valued functions µ1(θ), · · · , µn(θ) and a matrix-valued

function U(θ), which are analytic functions of θ, such that for every θ ∈ R,

T (θ) = U(θ)−1diag
[
µ1(θ), · · · , µn(θ)

]
U(θ), U(θ)U(θ)H = I. (3.42)

The smooth scalar functions µ1(θ), · · · , µn(θ) are the unordered eigenvalues of
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T (θ). Let

λmax(T (θ)) = λ1(θ) ≥ λ2(θ) ≥ . . . ≥ λn(θ)

denote the ordered eigenvalues of T (θ) obtained by ordering the functions µj(θ).

The graphs of unordered eigenvalues may cross each other for some values of θ.

If such a crossing takes place, the graph of λj(θ) jumps from one smooth curve

to another at the crossing point. However, in any finite interval of θ, there are

only finitely many crossing points and λj(θ) is piecewise analytic for j = 1, 2 . . . , n

[Kat82, II-§6.4]. This observation leads to the following lemma.

Lemma 3.4.1. Given any θ0 ∈ R and 1 ≤ j ≤ n, there are two functions p−, p+ :

R → R and p+ : R → R such that in a neighborhood of θ0, p− and p+ are real

analytic and

λj(θ) =

 p−(θ) if θ ∈ (−∞, θ0]

p+(θ) else.

Furthermore, when j = 1, we have λ1(θ) = max(p−, p+), or equivalently p−(θ) ≥

p+(θ) for θ ≤ θ0, and p−(θ) ≤ p+(θ) for θ ≥ θ0.

Note that the function λ1(θ) is the 2π-periodic extension of p(θ) to the real line

and is equal to p(θ) on [0, 2π). We have by definition

r(A) = max
θ∈R

λ1(θ).

Consider λ1(θ) around a local maximum which we denote by θM . From Lemma

3.4.1, it follows that θM is a local maximum of both p− and p+. Thus, the first

derivatives of p− and p+ at θM match and they are both equal to 0. It is also true

that the second derivatives of p− and p+ must match. If this were not the case, we
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would have p−(θ) > p+(θ) or p−(θ) < p+(θ) in a neighborhood of θM except when

θ = θM , which would contradict Lemma 3.4.1. This leads to the following result.

Lemma 3.4.2. λ1(θ) is C
2 around a local maximizer.

The BB algorithm [BB90b] was developed originally to compute the H∞ norm

of a transfer matrix. Lemma 3.4.2 is analogous to [BB90b, Theorem 2.3]. So the

quadratic convergence proof of BB algorithm [BB90b] can be adapted to our case,

yielding:

Theorem 3.4.3. The MO algorithm is locally quadratically convergent.

By quadratic convergence, we mean that the set ∪kI
j+1
k converges quadratically

to the set of maximizers

Ωmax = {θ ∈ [0, 2π) : f(θ) = r(A)}.

3.4.1 An improved algorithm for the numerical radius

To compute the H∞ norm of a transfer matrix, Genin et al. [GDV98] proposed

a variant of the quadratically convergent BB algorithm [BB90b]. The BB algo-

rithm keeps tracks of some intervals where the objective function is bigger than

a threshold that is to be updated at each step, and in the next step the mid-

points of these intervals are selected and the objective function is re-evaluated at

these points. Genin et al. [GDV98] show that one can obtain cubic convergence

and ultimate quartic convergence just by using special points instead of the mid-

points. The special point corresponding to each interval is chosen to be the one

that maximizes a cubic polynomial model of the objective function whose values

114



and derivatives match those of the objective function at the endpoints of the in-

terval. The derivatives of the objective function at the endpoints of the intervals

are obtained from the eigenvectors of a corresponding pencil. We will extend the

algorithm of [GDV98] to the numerical radius computation with a modification to

improve the performance.

The proposed new algorithm has two differences from the MO algorithm. The

first difference is that cubic interpolation is used instead of the midpoint rule. As in

the MO algorithm, the intervals Ij+1
k = (γj+1

k , ζj+1
k ) ⊂ [0, 2π) except that the last

interval might wrap around the circle, i.e., Ij+1
mj+1 = (γj+1

mj+1 , 2π)∪ [0, ζj+1
mj+1). We use

the notation cubic(θa, θb) to denote the maximizer of the unique cubic polynomial

in θ which has the same values and derivatives as p at the points θa and θb, with

the convention that p(θb) := p(θb − 2π) for 4π > θb ≥ 2π. The second difference is

the way we determine the intervals. In the MO algorithm, once angles θ for which

p(θ) = rj+1 are found, then these angles are sorted in a vector, and p is evaluated

at the midpoint of any two elements of this vector. This causes sampling from

unnecessary intervals, as p can be less than the threshold rj+1 at some of these

midpoints. However, from the derivative information at the angle vector, one can

easily determine the right intervals Ij+1
k on which p is greater than rj+1. This saves

some eigenvalue decompositions.

For the cubic interpolation, one needs to compute the derivative of the objective

function p(θ). This can be computed with little extra cost from the eigenvectors

of Wα as follows. Assume that α is a simple eigenvalue of H(Aeiθ) and u is a nor-

malized eigenvector corresponding to α. Using standard eigenvalue perturbation

theory,

p′(θ) = uHHθ(Ae
iθ)u (3.43)
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where Hθ(Ae
iθ) denotes the derivative of H(Aeiθ) with respect to θ.

More generally, for an eigenspace of dimension k spanned by n×k orthonormal

matrix U , the eigenvalues of the k× k matrix UHHθ(Ae
iθ)U are the derivatives of

the k unordered smooth eigenvalues that cross each other at θ. The signs of the

derivatives determine whether eigenvalues decrease or increase around a crossing

point. The eigenvectors of H(Aeiθ) can be computed from the eigenvalues of the

symplectic pencilWα(λ) easily. In fact, for fixed θ, it follows from a straightforward

computation that

H(Aeiθ)u = αu ⇐⇒Wα(e
iθ)

I 0

0 e−iθI


u
u

 = 0 (3.44)

⇐⇒ Wα(e
iθ)

 u

e−iθu

 = 0, (3.45)

i.e., the first block of an eigenvector corresponding to a unit modulus eigenvalue

eiθ of Wα is in fact an eigenvector of H(Aeiθ).

A new algorithm for numerical radius

1. Set j = 0 and ϕ0 = [0].

2. Update the numerical radius estimate: Compute rj+1 using the formula

rj+1 = max{p(θ) : θ ∈ ϕj}.

3. Update the intervals: Find θ values for which p(θ) = rj+1 holds and compute

the derivatives at these points. From these, infer the intervals Ij+1
1 , Ij+1

2 ,

· · · , Ij+1
mj+1 in which p(θ) > rj+1.

116



4. Calculate the new set of points

ϕj+1 = {ϕj+1
1 , ϕj+1

2 , . . . , ϕj+1
mj+1}

where ϕj+1
k is a point in the open interval Ij+1

k obtained by cubic interpolation

ϕj+1
k =

 cubic
(
γj+1
k , ζj+1

k

)
if γj+1

k < ζj+1
k

cubic
(
γj+1
k , ζj+1

k + 2π
)

mod 2π otherwise

5. Increment j by one, go to Step 2.

3.4.2 Relation with the inner radius

Another quantity is the distance from the boundary of the field of values to the

origin, which is called the inner radius. It follows from [CH99, Theorem 2.1] that,

the inner radius of a matrix A admits the characterization

r̂(A) =

∣∣∣∣ min
0≤θ<2π

λmaxH(Aeiθ)

∣∣∣∣ (3.46)

=

∣∣∣∣ max
0≤θ<2π

λminH(Aeiθ)

∣∣∣∣ . (3.47)

The MO algorithm and our proposed new algorithm for the numerical radius extend

easily to the computation of the inner radius, with the only change being that the

maximization objective changes from λmaxH(Aeiθ) to λminH(Aeiθ).

The inner radius is closely related to the Crawford number of two Hermitian

matrices. Two Hermitian matrices C, D are said to form a definite pair if their
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Crawford number γ(C,D) > 0. It is shown in [HTVD02] that

γ(C,D) = max
(

max
0≤θ<2π

λminH(Âeiθ
)
, 0)

where Â := C + iD. Hence, the Crawford number of a definite pair (C,D) is

equal to the inner radius of Â. In [HTVD02], authors propose an algorithm that

tests definiteness by solving one quadratic eigenvalue problem (QEP). If the pair

is definite, then a level-set algorithm is applied to compute the Crawford number.

This algorithm can be used to compute the inner radius of a matrix as well and

reduces to the inner radius algorithm derived from the MO algorithm if the related

QEP is linearized to give a symplectic pencil.

Note that our proof of the quadratic convergence of the MO algorithm uses

the fact that j = 1 in Lemma 3.4.1 and hence does not apply to the inner radius

case. However, if λmaxH(Aeiθ) is not multiple at its maximum value then there is

no crossing of unordered eigenvalues and quadratic convergence is obtained. On

the other hand, a slight modification of the argument in [BLO03a, Section 2] that

counts the codimension of the set of Hermitian matrices with multiple eigenvalues

would prove that for almost all matrices A ∈ Cn×n, the eigenvalues of H(Aeiθ) are

simple for all values of θ. This shows that the level-set algorithm of [HTVD02]

and the inner radius algorithm mentioned are quadratically convergent for almost

all matrices A ∈ Cn×n.

3.5 Conclusion of the chapter

In this chapter, in order to compute the distance to instability of a stable

matrix, we have presented a new algorithm, the DDI algorithm. Numerical ex-
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periments indicate that this algorithm is competitive with and in almost all cases

outperforms the existing BB algorithm. The extension of these ideas to the more

general problem of computing the H∞ norm of a transfer matrix is under investi-

gation.

We have also presented an improved algorithm for computing the numerical

radius. The algorithm is cubically and globally convergent and improves the ex-

isting MO algorithm. Besides, we proved that the assumption made in the MO

algorithm is not needed since it always holds.
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Chapter 4

Regularity of the Pseudospectral

Abscissa and Radius

4.1 Introduction

Let ∥ · ∥ denote the vector or matrix 2-norm (spectral norm). For real ε ≥ 0,

the ε-pseudospectrum of a matrix A ∈ Cn×n [TE05] is the union of the spectra of

nearby matrices,

Λε(A) = {z ∈ C : z ∈ Λ(A+ E) for some E ∈ Cn×n with ∥E∥ 6 ε} (4.1)

where Λ(A) denotes the spectrum (set of eigenvalues) ofb A. Equivalently, Λε is

the upper level set of the norm of the resolvent of A− zI,

Λε(A) = {z : ∥(A− zI)−1∥ ≥ 1

ε
} (4.2)
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and the lower level set of the smallest singular value of A− zI,

Λε(A) = {z ∈ C : σn(A− zI) ≤ ε}. (4.3)

The ε-pseudospectral abscissa of A is the largest of the real parts of the elements

of the pseudospectrum, i.e.,

αε(A) = max{Re z : z ∈ Λε(A)}. (4.4)

The case ε = 0 reduces to the spectral abscissa α(A), which measures the growth or

decay of solutions to the continuous-time dynamical system ẋ = Ax; in particular,

α(A) is negative if and only if the solution decays to zero for all initial states. For

ε > 0, the pseudospectral abscissa of A characterizes asymptotic behavior when A

is subject to perturbations bounded in norm by ε. Furthermore, as ε varies from 0

to∞, the map αε ranges from measuring asymptotic behavior to measuring initial

behavior of the solutions to ẋ = Ax [BLO03b, p. 86].

The analogous measure for discrete-time systems xk+1 = Axk is the ε-pseudospec-

tral radius

ρε(A) = max{|z| : z ∈ Λε(A)}.

The case ε = 0 reduces to ρ(A), the spectral radius of A, which is less than one if

and only if solutions decay to zero for all initial states.

Below, we will refer to points where αε or ρε is attained. By this we mean the

points z ∈ Λε where the real part or the modulus respectively is maximized.

For fixed ε, Λε : A→ Λε(A) is continuous [Kar03, Theorem 2.3.7]. Since Λε is

set-valued, continuity is to be understood in the Hausdorff metric. Recently, Lewis
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and Pang [LP08] proved that Λε has further regularity properties. Specifically,

they showed that Λε has a local Lipschitz property known as the Aubin property

everywhere except at resolvent-critical points (to be defined in the next section). It

was also proved that for fixed ε > 0, αε (respectively ρε) is Lipschitz continuous at

a matrix A if the points where αε (respectively ρε) are attained are not resolvent-

critical (a consequence of [LP08, Corollary 7.2] and [LP08, Theorem 5.2]). The

fact that for a fixed matrix A the number of resolvent-critical points is finite leads

to the property that Λε, αε and ρε are Lipschitz around a given matrix A for

all but finitely many ε > 0 [LP08, Corollary 8.5]. It was conjectured that the

points where αε is attained are not resolvent-critical [LP08, Conjecture 8.9]. We

prove this conjecture, which implies that for fixed ε > 0, αε is locally Lipschitz

continuous on Cn×n. Our proof also applies to ρε, proving that it is also locally

Lipschitz. We also prove the Aubin property of the ε-pseudospectrum with respect

to both ε and A for the points z ∈ C where αε and ρε are attained. Finally, we

give a proof showing that Λε can never be “pointed outwards”.

4.2 Previous results and notation

Before stating the conjecture, we need the following known results and defini-

tions from [LP08]. We write MSV :Mn ⇒ Cn × Cn, with

MSV(A) := {(u, v) | u, v minimal left and right singular vectors of A}.
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In this definition, u, v are minimal left and right singular vectors of A if they are

unit vectors satisfying

σn(A)u = Av and σn(A)v = A∗u,

where A∗ is the Hermitian transpose of A. The set

Y (A) := {v∗u | (u, v) ∈MSV (A)}

will be a key tool in our analysis since, for a fixed A and for z ̸∈ Λ(A), we have

[LP08, Proposition 4.5]

Y (A− zI) = ∂(−σn(A− zI)), (4.5)

where ∂ is the subdifferential in the sense of [RW98, Definition 8.3]. This leads to:

Definition 4.2.1. A point z ∈ C is resolvent-critical for A ∈ Cn×n if either

z ∈ Λ(A) or 0 ∈ Y (A− zI).

Thus, a resolvent-critical point is either an eigenvalue of A or a critical point

of the norm of the resolvent in the nonsmooth sense (see [LP08, Proposition 4.7

and Definition 4.8]).

Now we are ready to state Lewis and Pang’s conjecture:

Conjecture 4.2.2. [LP08, Conjecture 8.9] The points z ∈ Λε(A) where the pseudo-

spectral abscissa αε(A) is attained are not resolvent-critical.

In the following, we will also need the Aubin property, a local Lipschitz property

for set-valued mappings.
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Definition 4.2.3. (see [RW98, Definition 9.36]) A mapping S : Rn ⇒ Rm has the

Aubin property at x̄ for ū, where x̄ ∈ Rn and ū ∈ S(x̄), if gph S is locally closed

at (x̄, ū) and there are neighborhoods V of x̄ and W of ū, and a constant κ ∈ R+,

such that

S(x′) ∩W ⊂ S(x) + κ|x′ − x|B for all x, x′ ∈ V

where B is the unit ball in Rm.

4.3 New results

Let bd Λε(A) denote the boundary of the pseudospectrum of A. We now state

our main result on the resolvent-critical points of bd Λε(A), which is based on a

result in [ABBO11]:

Theorem 4.3.1. If z ∈ bd Λε(A) is resolvent-critical for some ε > 0 and a matrix

A, then there exists an integer m ≥ 2, θ̃ real and ρ̃ positive real such that for all

ω < π/m, Λε contains m equally spaced circular sectors of angle at least ω centered

at z, that is

Λε(A) ⊃ {z + ρeiθ | θ ∈ [θ̃ + 2πk/m− ω/2, θ̃ + 2πk/m+ ω/2], ρ ≤ ρ̃}

for all k = 0, 1, 2, . . . ,m− 1.

Proof. Assume that z ∈ bd Λε(A) is resolvent-critical. Since ε > 0, z ̸∈ Λ(A), so

there exists a pair of singular vectors (ũ, ṽ) ∈ MSV(A − zI) such that ṽ∗ũ = 0.

If the smallest singular value of A − zI is simple, then it follows from [ABBO11,

Theorem 9 and subsequent discussion] that there exists an integer m ≥ 2 such that

for all ω < π/m, Λε contains m circular sectors of angle at least ω centered at z
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Figure 4.1: Figure illustrates the inclusion Λε−δ(Aδ) ⊂ Λε(A). On the left, A is the
4× 4 matrix with tangential coalescence given in [ABBO11, right panel of Figure
1] with ε = 0.0136 and δ = 0.005. On the right, A is the reverse diagonal matrix
with entries 1,1,3 and 2 (Gracia’s example), ε = 1 and δ = 0.1. The smallest
singular value of A− zI has multiplicity 2 in both cases, and m = 2 in both cases.
The plots are obtained with the software package EigTool [Wri02b].

as stated, and so the result is proved. If the smallest singular value of A − zI is

not simple, consider a perturbed matrix Aδ = A − δũṽ∗ for δ ∈ (0, ε). Then, the

smallest singular value of Aδ − zI is simple with value ε − δ and corresponding

singular vectors ũ, ṽ with ũ∗ṽ = 0. Thus, we can apply [ABBO11, Theorem 9] to

Aδ, finding that for all ω < π/m, Λε−δ(Aδ) contains m ≥ 2 circular sectors of angle

at least ω centered at z. But immediately from the definition, using the triangle

inequality for the norm, we have (see Figure 4.3)

Λε(A) ⊃ Λε−δ(Aδ),

proving the result.

We conjecture that the only possible value for m in Theorem 4.3.1 is 2. See

[ABBO11, Figure 3].

Clearly, at a point where the pseudospectral abscissa or pseudospectral radius

is attained, the pseudospectrum cannot contain m ≥ 2 circular sectors as defined
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above. As a consequence, we have:

Corollary 4.3.2. For any ε > 0, the points where the pseudospectral abscissa αε

or pseudospectral radius ρε are attained are not resolvent-critical.

Thus, Conjecture 4.2.2 is proved. Furthermore, Theorem 4.3.1 implies the

following regularity results about αε, ρε and Λε:

Corollary 4.3.3. Let ε > 0 be given, and z∗ ∈ bd Λε(A∗) be a point where the

pseudospectral abscissa αε(A∗) or pseudospectral radius ρε(A∗) is attained for some

matrix A∗. Then, the map A→ Λε(A) has the Aubin property at A∗ for z∗.

Proof. By Corollary 4.3.2, z∗ is not resolvent-critical. The result follows from

[LP08, Theorem 5.2].

Corollary 4.3.4. For any fixed ε > 0, αε and ρε are Lipschitz continuous at any

matrix A.

Proof. Let A ∈ Cn×n be given. By Corollary 4.3.3, Λε has the Aubin property at

A at all the points where the pseudospectral abscissa or pseudospectral radius is

attained. An application of [LP08, Corollary 7.2(a)] with F = Λε, g(x) = Re(−x)

proves the Lipschitz continuity of αε while using F = Λε, g(x) = −|x| proves the

Lipschitz continuity of ρε.

Corollary 4.3.5. Let z∗ ∈ C be a point where the pseudospectral abscissa αε∗(A)

or pseudospectral radius ρε∗(A) is attained for some ε∗ > 0 and A ∈ Cn×n. Then

the map ε→ Λε(A) has the Aubin property at ε∗ for z∗.

Proof. From (4.5) and Corollary 4.3.2, we have 0 ̸∈ Y (A− z∗I) = ∂(−σn(A− z∗I)).

The result then follows from [LP08, Proposition 5.3], using, as is done there, the

inclusion −∂(σn(A− zI)) ⊂ ∂(−σn(A− zI)).
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In the terminology of [BLO03b, Definition 4.5 and its corrigendum], a point z

is called nondegenerate with respect to Λε(A) if Y (A−zI) ̸= {0}. Thus, Corollary

4.3.2 implies that a point where the pseudospectral abscissa or pseudospectral

radius is attained is nondegenerate. This leads to the following generalization of

[BLO03b, Proposition 4.8]:

Proposition 4.3.6. Let z∗ be a point where αε(A) or ρε(A) is attained for some

ε > 0 and a matrix A. Then the boundary of Λε(A) is differentiable at z∗, i.e., the

boundary of Λε(A) around z∗ is a curve that is differentiable at z∗.

Proof. This follows from [BLO03b, Proposition 4.8] and the fact that z∗ is nonde-

generate.

It was proved in [BLO03b, Proposition 4.8] that the pseudospectrum cannot

be “pointed outwards” at nondegenerate points. By this, one means that around a

nondegenerate point z∗, the pseudospectrum can never be contained in a circular

sector of angle strictly less than π centered at z∗. It was further stated that a more

detailed analysis due to Trefethen shows that the pseudospectrum is never pointed

outwards. Since the latter result, based on eigenvalue perturbation theory, was

never published, we give a new proof here.

Proposition 4.3.7. Let z∗ be on the boundary of the pseudospectrum, i.e. z∗ ∈

bd Λε(A) for some ε > 0 and a matrix A. The pseudospectrum near z∗ cannot be

contained in a circular sector of angle < π centered at z∗, that is, for all ω ∈ [0, π),

θ̃ ∈ [0, 2π) and ρ̃ positive real, there exists a point y ∈ Λϵ(A) such that we have

|y − z∗| ≤ ρ̃ but y is not contained in the circular sector

z∗ + {ρeiθ | [θ̃ − ω/2, θ̃ + ω/2], ρ ≤ ρ̃}.
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Proof. If z∗ is nondegenerate, then the result follows from [BLO03b, Proposition

4.7]. Otherwise, z∗ is resolvent-critical and the result follows from Theorem 4.3.1.
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Part II

Nonsmooth Optimization
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Chapter 5

On Nesterov’s Nonsmooth

Chebyshev - Rosenbrock

Functions

5.1 Introduction

In 2008, Nesterov [Nes08] introduced the following smooth (differentiable, in

fact polynomial) function on Rn:

f̃(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

(xi+1 − 2x2i + 1)2.

The only stationary point of f is the global minimizer x∗ = [1, 1, . . . , 1]T . Consider

the point x̂ = [−1, 1, 1, . . . , 1]T and the manifold

M = {x : xi+1 − 2x2i + 1 = 0, i = 1, . . . , n− 1}
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which contains both x∗ and x̂. For x ∈M,

xi+1 = 2x2i − 1 = T2(xi) = T2i(x1), i = 1, . . . , n− 1,

where Tk(x) denotes the kth Chebyshev polynomial of the first kind [Sze39, Section

2.4].

The function f̃ is the sum of a quadratic term and a nonnegative sum whose

zero set is the manifold M. Minimizing f̃ is equivalent to minimizing the first

quadratic term onM. Standard optimization methods, such as Newton’s method

and the BFGS quasi-Newton method, when applied to minimize f̃ and initiated

at x̂, generate iterates that, as in the well known Rosenbrock example [GMW81]

and its extensions [NW06], approximately “track”M to approach the minimizer.

The iterates do not trackM exactly, but because they typically follow this highly

oscillatory manifold fairly closely, the tracking process requires many iterations.

To move from x̂ to x∗ along M exactly would require xn to trace the graph of

the 2n−1th Chebyshev polynomial, which has 2n−1 − 1 extrema in (−1, 1), as x1

increases from −1 to 1. Hence, f̃ is a challenging test problem for optimization

methods.

Nesterov also introduced two nonsmooth variants of f̃ , the first being

f̂(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

|xi+1 − 2x2i + 1|. (5.1)

A contour plot of this function when n = 2 is shown on the left side of Figure 5.1.

Again, the unique global minimizer is x∗. Like f̃ , the function f̂ is the sum of a

quadratic term and a nonnegative sum whose zero set is the manifold M, so, as

previously, minimizing f̂ is equivalent to minimizing the first quadratic term on
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Nesterov−Chebyshev−Rosenbrock, first variant
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Nesterov−Chebyshev−Rosenbrock, second variant
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Figure 5.1: Contour plots for Nesterov’s first (left) and second (right) nonsmooth
Chebyshev-Rosenbrock functions f̂ and f respectively, with n = 2. Points con-
nected by line segments show the iterates generated by the BFGS method (see
Section 5.3) initialized at 7 different randomly generated starting points (iterates
plotted later may overwrite those plotted earlier). For the first variant f̂ , conver-
gence always takes place to the only Clarke stationary point: the global minimizer
x∗ = [1, 1]T . For the second variant f , some runs of BFGS generate iterates that
approximate the nonminimizing Clarke stationary point [0,−1]T while others con-
verge to the minimizer [1, 1]T .
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M, but unlike f̃ , the function f̂ is not differentiable at points in M. However,

as we show in the next section, f̂ is partly smooth with respect to M, in the

sense of [Lew03], at points inM. It follows that, like f̃ , the function f̂ has only

one stationary point — the global minimizer x∗ — where by stationary point we

mean both in the sense of Clarke and of Mordukhovich. It follows that the global

minimizer x∗ is the only local minimizer of f̂ .

The second nonsmooth variant is

f(x) =
1

4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2|xi|+ 1|. (5.2)

Again, the unique global minimizer is x∗. Consider the set

S = {x : xi+1 − 2|xi|+ 1 = 0, i = 1, . . . , n− 1}. (5.3)

Minimizing f is equivalent to minimizing its first term on S. Like M, the set S

is highly oscillatory, but it has “corners”: it is not a manifold around any point

x where any of the components x1, . . . , xn−1 vanishes. For example, consider the

case n = 2, for which a contour plot is shown on the right side of Figure 5.1. It is

easy to verify that the point [0,−1]T is Clarke stationary (zero is in the convex hull

of gradient limits at the point), but not a local minimizer ([1, 2]T is a direction of

linear descent from [0,−1]T ). We will show in the next section that, in fact, f has

2n−1 Clarke stationary points, that the only local minimizer is the global minimizer

x∗, and furthermore that the only stationary point in the sense of Mordukhovich

is x∗.

In the next section, we define stationarity in both senses and present the main

results. In Section 5.3, we report on numerical experiments showing the behavior

133



of nonsmooth minimization algorithms on these functions.

5.2 Main results

Before stating our main results, we will need the following well-known def-

initions. The Clarke subdifferential or generalized gradient [Cla83] of a locally

Lipschitz function on a finite-dimensional space can be defined as follows [BL05,

Theorem 6.2.5]. Let ∇ denote gradient.

Definition 5.2.1. (Clarke subdifferential) Consider a function ϕ : Rn → R and

a point x ∈ Rn, and assume that ϕ is locally Lipschitz around x. Let G ⊂ Rn be

the set of all points where ϕ is differentiable, and A ⊂ Rn be an arbitrary set with

measure zero. Then the Clarke subdifferential of ϕ at x is

∂Cϕ(x) = conv { lim
m→∞

∇ϕ(xm) : xm → x, xm ∈ G, xm /∈ A}. (5.4)

Note that by Rademacher’s Theorem [EG92], locally Lipschitz functions are

differentiable almost everywhere so A can be chosen as the set of points at which

ϕ is not differentiable.

As expounded in [RW98], the Mordukhovich [Mor76] subdifferential is defined

as follows.

Definition 5.2.2. (Mordukhovich subdifferential) Consider a function ϕ : Rn → R

and a point x ∈ Rn. A vector v ∈ Rn is a regular subgradient of ϕ at x (written

v ∈ ∂̂ϕ(x)) if

lim inf
z → x

z ̸= x

ϕ(z)− ϕ(x)− ⟨v, z − x⟩
|z − x|

≥ 0,
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where ⟨· , ·⟩ is the usual inner product on Rn. A vector v ∈ Rn is a Mordukhovich

subgradient of ϕ at x (written v ∈ ∂Mϕ(x)) if there exist sequences xm and vm in

Rn satisfying

xm → x

ϕ(xm)→ ϕ(x)

vm ∈ ∂̂ϕ(xm)

vm → v.

We say that ϕ is Clarke stationary at x if 0 ∈ ∂Cϕ(x). Similarly, ϕ is Mor-

dukhovich stationary at x if 0 ∈ ∂Mϕ(x). For a locally Lipschitz function ϕ, we

have [RW98, Theorem 8.49]

∂Cϕ(x) = conv {∂Mϕ(x)}. (5.5)

The following simple example illustrates equation (5.5).

Example 5.2.3. For g(x) = |x1| − |x2|, x ∈ R2, explicit formulas for the Clarke

and Mordukhovich subdifferentials can be derived at x = [0, 0]T . Using Definitions

5.2.1 and 5.2.2, a straightforward computation leads to

∂Cg([0, 0]T ) = [−1, 1]× [−1, 1] and ∂Mg([0, 0]T ) = [−1, 1]× {−1, 1},

where the former subdifferential is the convex hull of the latter one.

We will need the concept of regularity (also known as subdifferential regular-

ity or Clarke regularity) [RW98], which can be characterized for locally Lipschitz
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functions as follows [Lew06, Theorem 6.10].

Definition 5.2.4. (regularity) A locally Lipschitz function ϕ : Rn → R is regular

at a point x if and only if its ordinary directional derivative satisfies

ϕ′(x; d) = lim sup
z→x

⟨∇ϕ(z), d⟩

for every direction d ∈ Rn.

One consequence of regularity of ϕ at a point x is that ∂Cϕ(x) = ∂Mϕ(x)

[BLO02, Proposition 4.1(iii)] and another is that the Clarke stationarity condition

0 ∈ ∂Cϕ(x) is equivalent to the first-order optimality condition ϕ′(x, d) ≥ 0 for all

directions d [SY06, Section 14.1].

A property that will be central in our analysis is partial smoothness [Lew03].

Definition 5.2.5. A function ϕ is partly smooth at x relative to a manifold X

containing x if

1. its restriction to X , denoted by ϕ|X , is twice continuously differentiable at x,

2. at every point close to x ∈ X , the function ϕ is regular and has a Mor-

dukhovich subgradient,

3. par {∂Mϕ(x)}, the subspace parallel to the affine hull of the subdifferential of

ϕ at x, is the normal subspace to X at x, and

4. the Mordukhovich subdifferential map ∂Mϕ is continuous at x relative to X .

We illustrate the definition by proving that f̂ is partly smooth.

Lemma 5.2.6. Nesterov’s first nonsmooth Chebyshev-Rosenbrock function f̂ , de-

fined in (5.1), is partly smooth with respect toM at all points inM.

136



Proof. For each i ∈ {1, . . . , n − 1}, consider the function hi(x) = |xi+1 − 2x2i + 1|

and the manifold Mi := {x : Hi(x) := xi+1 − 2x2i + 1 = 0}. By the chain rule

[RW98, Proposition 10.5], hi is globally regular as a composition of two regular

functions and we have

∂Mhi(x) = ∇Hi(x)
[{
∂M | · |

}
(xi+1 − 2x2i + 1)

]
for any x ∈ Rn. We have the normal space NMi

= Range(∇Hi(x)) [RW98, Ex. 6.8]

which is clearly parallel to the subdifferential ∂Mhi(x). Since hi|Mi
= 0 is smooth

and ∂Mhi is continuous at x relative to Mi, it follows from Definition 5.2.5 that

hi is partly smooth with respect to the manifoldMi. We conclude from [Lew03,

Corollary 4.6] and [Lew03, Corollary 4.7] that f̂(x) = 1
4
(x1 − 1)2 +

∑n−1
i=1 hi(x) is

partly smooth with respect to the manifoldM = ∩n−1
i=1Mi at all points inM.

It follows that f̂ has only one stationary point.

Theorem 5.2.7. Nesterov’s first nonsmooth Chebyshev-Rosenbrock function f̂ is

Clarke stationary or Mordukhovich stationary only at the unique global minimizer

x∗ = [1, 1, . . . , 1]T .

Proof. If x ̸∈ M, then f̂ is smooth and nonstationary at x as the partial derivative

of f̂ with respect to xn is ±1. On the other hand, if x ∈ M, then the restricted

function f̂|M = 1
4
(x1 − 1)2 is smooth and has a critical point only at the global

minimizer x∗. If x ∈ M and x ̸= x∗, it follows from [Lew03, Proposition 2.4] that

0 ̸∈ aff ∂M f̂(x). Thus, 0 ̸∈ ∂M f̂(x). By regularity, we have ∂C f̂(x) = ∂M f̂(x) and

the result follows.

The main results of the paper concern Nesterov’s second nonsmooth example.
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For this we will need the usual sign function:

sign(x) =


1 : x > 0,

0 : x = 0,

−1 : x < 0.

We start by stating a simple lemma.

Lemma 5.2.8. Let S be defined as in (5.3). There are 2n−1 − 1 points in S such

that xj = 0 for some j < n. Let x̄ be such a point. Then x̄i takes non-integer

values between −1 and 1 for i < j, x̄i = 0 for i = j, x̄i = −1 for i = j + 1 and

x̄i = 1 if n ≥ i > j + 1. In particular, x̄1 < 1 (with x̄1 = 0 if j = 1).

Proof. For j < n fixed, it is easy to see that there are 2j−1 points in S such that

xj = 0. Summing over j, we obtain 2n−1 − 1 =
∑n−1

j=1 2
j−1 points. The rest of the

proof is straightforward.

Theorem 5.2.9. Nesterov’s second nonsmooth Chebyshev-Rosenbrock function f ,

defined in (5.2), is Clarke stationary at the 2n−1 − 1 points in the set S with a

vanishing xj for some j < n.

Proof. Let x̄ be such a point. Then, using Lemma 5.2.8, we see that around x̄ the

function |x1−1|
4

is equal to 1−x1

4
and furthermore x̄i ̸= 0 if i ̸= j. These observations

allow us to write f in a simpler form eliminating most of the absolute values.

We first prove the case j = n − 1. We will show that in an arbitrarily small

neighborhood of x̄ the gradient vector (if defined) can take arbitrary signs in each

coordinate. This will ensure that 0 ∈ ∂Cf(x̄) by (5.4).
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Around x̄, the function f(x) may be rewritten as

f(x) =
1− x1

4
+ |x2+2c1x1+1|+ . . .+ |xn−1+2cn−2xn−2+1|+ |xn−2|xn−1|+1| (5.6)

where ci = −sign(x̄i) , i = 1, 2, . . . , n − 2, depend only on the point x̄ and are

fixed. (Note that x̄i ̸= 0 for i < j = n − 1). Since x̄ ∈ S and x̄n−1 = 0, all the

absolute value terms appearing in (5.6) are equal to 0 at x̄. By the continuity of

f at x̄, it is possible to find points x arbitrarily close to x̄ such that each of the

absolute value terms evaluated at x has arbitrary sign and at those points

∇f(x) =
[
−1

4
+ 2c1d1, d1 + 2c2d2, . . . , dn−2 + 2cn−1dn−1, dn−1

]T

where cn−1 := −sign(xn−1) and each of d1, d2,. . ., dn−1 can be chosen to be +1 or

−1 as desired. Hence, it is possible to have ∇f(x) in any of the 2n quadrants of

Rn. Consequently, 0 lies in the convex combination of these gradient vectors and

we conclude from (5.4) that 0 ∈ ∂Cf(x̄).

The case j < n− 1 is handled similarly. For a choice of x around x̄, we get

∇f(x) =
[
−1

4
+ 2c1d1, d1 + 2c2d2, . . . , dj−1 + 2cjdj , dj + 2dj+1, dj+1 − 2dj+2, . . . , dn−1

]T

where ci = −sign(xi), i = 1, 2,. . ., j−1, are fixed (when j > 1) and cj = −sign(xj),

d1, d2,. . ., dn−1 are free parameters to choose from {−1, 1}. Suppose dj = d0j ,

dj+1 = d0j+1,. . ., dn−1 = d0n−1 are fixed. By choosing cj, d1, . . . , dj−1 appropriately,

the signs of the first j components of ∇f(x) vector can be chosen to be positive
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or negative. Thus, by convexity,

[
0, . . . , 0, d0j + 2d0j+1, d

0
j+1 − 2d0j+2, . . . , d

0
n−1)

]T ∈ ∂Cf(x̄).
Choosing dj = −d0j , dj+1 = −d0j+1, . . . , dn−1 = −d0n−1, we have

[
0, . . . , 0,−(d0j + 2d0j+1),−(d0j+1 − 2d0j+2), . . . ,−d0n−1

]T ∈ ∂Cf(x̄).
and so by convexity 0 ∈ ∂Cf(x̄), completing the proof.

The following theorem characterizes all the stationary points of f in the sense

of both subdifferentials.

Theorem 5.2.10. Nesterov’s second nonsmooth Chebyshev-Rosenbrock function f

is Mordukhovich stationary only at the global minimizer x∗ = [1, 1, . . . , 1]T . Fur-

thermore, f is Clarke stationary only at x∗ and the 2n−1 − 1 points in S with a

vanishing xj for some j < n. None of the Clarke stationary points of f except the

global minimizer are local minimizers of f and there exists a direction of linear

descent from each of these points.

Proof. If x ̸∈ S, f is smooth at x and we have 0 ̸∈ ∂Mf(x) = ∂Cf(x) = {∇f(x)}

since the partial derivative of f with respect to xn at x is ±1.

When x = x∗ ∈ S, we have 0 ∈ ∂̂f(x) ⊂ ∂Mf(x) ⊂ ∂fC(x). If x ∈ S, x ̸= x∗

(x1 ̸= 1) and xj ̸= 0 for j = 1, 2, . . . , n − 1, then the set S is a manifold around

x. The function f is partly smooth with respect to S at x, with f|S(x) =
|1−x1|

4
,

the restriction of f to S, smooth around x, and x is not a critical point of f|S. It

follows from [Lew03, Proposition 2.4] that 0 ̸∈ aff {∂Mf(x)}. This implies directly

that 0 ̸∈ ∂Mf(x) and 0 ̸∈ ∂Cf(x) = conv {∂Mf(x)}, using (5.5).
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The remaining case is when x ∈ S is such that xj = 0 for some j < n. We have

x1 < 1. Let δ > 0 be small and xδ be the unique point near x such that xδ ∈ S

and xδ1 = x1 + δ. It follows from the definition of S that xδ = x + δv where v is

a fixed vector independent of δ > 0 for δ sufficiently small. Since f|S(x) = 1−x1

4

around x, we have f(xδ) = f(x+ δv) = f(x)− 1
4
δ < f(x) which shows that v is a

direction of linear descent. Furthermore, we have 0 ̸∈ ∂̂f(x) since the existence of

the descent direction at x̄ implies

lim inf
z → x̄

z ̸= x

f(z)− f(x)

|z − x|
≤ lim inf

δ↓0

f(x+ δv)− f(x)

δ|v|
= − 1

4|v|
< 0.

We want to prove that 0 ̸∈ ∂Mf(x). This requires an investigation of the

regular subdifferential ∂̂f(y) for y near x. Let y be a point near x, y ̸= x. We

have xj = 0, so we distinguish two cases: y ̸∈ S, {y ∈ S and yj ̸= 0}. (If y ∈ S

and yj = 0, then, for y to be near x, we would need y = x.)

1. y ̸∈ S: ∇f(y) exists, we have ∂̂f(y) = {∇f(y)} and the n-th coordinate of

∇f(y) is ±1. This shows that there exists no sequence ym → x such that

ym ̸∈ S for all m with ∂̂f(ym) = {∇f(ym)} ∋ vm → 0.

2. y ∈ S and yj ̸= 0: We have, for y sufficiently close to x, that yk ̸= 0 for k = 1,

. . ., n and

S = {x : Fi(x) = 0, i = 1, . . . , n− 1}

where Fi(x) = xi+1 − 2|xi| + 1 is smooth at y. Hence, S is a manifold

around y and it is easy to see that f is partly smooth at y with respect to

S. The restricted function f|S(x) = 1−x1

4
is smooth at y and since y1 < 1,

y is not a critical point of f , so from [Lew03, Proposition 2.4] we conclude
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that 0 ̸∈ aff {∂Mf(y)} which leads to 0 ̸∈ ∂̂f(y). Furthermore, by [Lew03,

Proposition 2.2], we have

∂̂f(y) ⊂ ∇g(y) +NS(y) (5.7)

where g(x) = 1−x1

4
and NS(y) is the normal space to S at y. The normal

space to S at y coincides with the normal cone to S at y so by [RW98, Ex.

6.8]

NS(y) = Range(∇F )

where

∇F (y)T =

[
∂Fi

∂xj
(y)

]n−1,n

i,j=1

∈ R(n−1)×n

is the Jacobian matrix. We have

∇F (y) =



−2 sign(y1)

1 −2 sign(y2)

1
. . .

. . . −2 sign(yn−1)

1


∈ Rn×(n−1) (5.8)

and ∇g(y) = [−1/4, 0, . . . , 0]T . From (5.7) and (5.8), we see that 0 ∈ ∂̂f(y)

is possible only if [1/4, 0, . . . , 0]T ∈ NS(y). A straightforward calculation

shows that this is impossible. We conclude that 0 ̸∈ ∂̂f(y). The next step

is to investigate the possible limits of vm ∈ ∂̂f(ym) as the sequence ym ∈ S

approaches x. Let ym be a sequence such that ym → x, ym ∈ S and ym ̸= x

for all m (this implies ymj ̸= 0 for all m as before). Without loss of generality,

assume ymj > 0 for all m. For fixed k ∈ {1, 2, . . . , n}, the quantity sign(ymk )

does not depend on m and is nonzero. Thus, G := ∇F (ym) does not depend
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on m. Let v ∈ Rn be such that ∂̂f(ym) ∋ vm → v. From (5.7), we have

vm = [−1/4, 0, . . . , 0]T + Gcm for some cm ∈ Rn−1. Since vm → v and G

has full rank, we have cm → c ∈ Rn−1 and v = [−1/4, 0, . . . , 0]T + Gc. As

previously, v = 0 is impossible.

We conclude that 0 ̸∈ ∂Mf(x). Since we already know from Theorem 5.2.9 that

0 ∈ ∂Cf(x), this completes the proof of the theorem.

It follows immediately from Theorem 5.2.10 that f is not regular at the 2n−1 − 1

non-locally-minimizing Clarke stationary points of f : see the comments after Def-

inition 5.2.4.

5.3 Numerical experiments

Nesterov has observed that Newton’s method with an inexact line search, when

applied to minimize the smooth function f̃ initiated at x̂, takes many iterations to

reduce the value of the function below a small tolerance ϵ. Indeed, the number of

iterations is typically exponential in n, although quadratic convergence is observed

eventually if the method is run for long enough. Our experimental results are

mainly obtained using the BFGS quasi-Newton algorithm with a line search based

on the Armijo and “weak Wolfe” conditions, a well-known method generally used

to optimize smooth functions [NW06]. However, as explained in [LO], BFGS with

the same line search is surprisingly effective for nonsmooth functions too. For the

results reported below, we used a publicly available Matlab implementation.1

For smooth but nonconvex functions such as f̃ , there is no theorem known

that guarantees that the BFGS iterates will converge to a stationary point, and

1http://www.cs.nyu.edu/overton/software/hanso
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pathological counterexamples have been constructed [Dai02, Mas04], although, un-

like f̃ , these are not analytic. However, it is widely accepted that BFGS generally

produces sequences converging to local minimizers of smooth, nonconvex functions

[LF01], so it is not surprising that this is the case for f̃ , with superlinear conver-

gence to x∗ in the limit. As with Newton’s method, many iterations are required.

For n = 8, starting at x̂ and with the initial inverse Hessian approximation H

set to the identity matrix I, the BFGS method requires about 6700 iterations to

reduce f̃ below 10−15, and for n = 10, nearly 50,000 iterations are needed.

For nonsmooth functions, there is no general convergence theory for the BFGS

method, but as discussed in [LO], when applied to locally Lipschitz functions the

method seems to always generate sequences of function values converging linearly

to Clarke stationary values, and our experiments confirm this observation for small

n for both nonsmooth functions studied in this paper. To apply BFGS to Nesterov’s

first nonsmooth variant f̂ , we cannot use x̂ for the initial point as the method

immediately breaks down, f̂ being nondifferentiable at x̂. Instead, we initialize

x randomly, retaining the identity matrix for initializing H. The left panel of

Figure 5.1 shows the iterates generated by BFGS for the case n = 2 using 7

random starting points: all sequences of iterates converge to the global minimizer

x∗ = [1, 1]T . However, the accuracy to which BFGS can minimize f̂ drops rapidly

as n increases. Because of the difficulty of the problem combined with the limited

machine precision, the method breaks down, that is the line search fails to return

a point satisfying the Armijo and weak Wolfe conditions, at an iterate x that

is close to M but not very near x∗. When the calculations are carried out to

higher precision, more accurate results are obtained [Kak11]. For example, for

n = 4, using standard IEEE “double” precision (about 16 decimal digits), from
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Figure 5.2: Left: sorted final values of f for 1000 randomly generated starting
points, when n = 5: BFGS finds all 16 Clarke stationary points. Right: same with
n = 6: BFGS finds all 32 Clarke stationary points.

most starting points BFGS reduces f̂ to final values ranging from 10−3 to 10−2,

while using “double double” precision (about 32 decimal digits), from the same

starting points, the final values that are obtained range from 10−4 to 10−3.

For Nesterov’s second nonsmooth variant f , we find that BFGS generates iter-

ates approximating Clarke stationary points, but not necessarily the minimizer x∗.

The iterates for the case n = 2, again for 7 randomly generated starting points, are

shown in the right panel of Figure 5.1. Most of the runs converge to the minimizer

[1, 1]T , but some terminate near the Clarke stationary point [0,−1]T . For n ≤ 6,

given enough randomly generated starting points, BFGS finds, that is approxi-

mates well, all 2n−1 Clarke stationary points. The left and right panels of Figure

5.2 plot final values of f found by 1000 runs of BFGS starting with random x and

H = I, sorted into increasing order, for the cases n = 5 and n = 6 respectively.

Most runs find either the minimizer or one of the 2n−1 − 1 nonminimizing Clarke
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stationary points, although a few runs break down away from these points. For

n = 7, the method usually breaks down without finding any Clarke stationary

point, presumably because of the limitations of machine precision.

Experiments with the gradient sampling algorithm [BLO05] and Kiwiel’s bun-

dle code [Kiw08] give similar results. Both of these methods have well established

convergence theories ensuring convergence to Clarke stationary points. However,

it remains an open question whether the nonminimizing Clarke stationary points

are points of attraction for any of these algorithms. For small n, the computations

usually terminate near Clarke stationary points because, eventually, rounding er-

ror prevents the method from obtaining a lower point in the line search. But

this does not establish whether, in exact arithmetic, the methods would actually

generate sequences converging to the nonminimizing Clarke stationary points. In-

deed, experiments in [Kak11] suggest that the higher the precision used, the more

likely BFGS is to move away from the neighborhood of a nonminimizing Clarke

stationary point and eventually find a lower one, perhaps the minimizer.

Another observation is the difficulty of finding descent directions from the non-

minimizing Clarke stationary points using random search. Although we know that

such descent directions exist by Theorem 5.2.10, numerical experiments show that

finding a descent direction by random search typically needs exponentially many

trials. For example, when n = 5, usually 100,000 random trials do not suffice to

find a descent direction. This illustrates the difficulty faced by an optimization

method in moving away from these points.
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5.4 Conclusion of the chapter

Nesterov’s Chebyshev-Rosenbrock functions provide very interesting examples

for optimization, both in theory and in practice. Specifically, the smooth function

f̃ , the first nonsmooth function f̂ and the second nonsmooth function f are very

challenging nonconvex instances of smooth functions, partly smooth functions and

non-regular functions respectively. As far as we know, Nesterov’s function f is

the first documented case for which methods for nonsmooth optimization result in

the approximation of Clarke stationary points from which there exist directions of

linear descent. This observation is primarily due to Kiwiel [Kiw08]. Furthermore,

since all first-order nonsmooth optimization methods, including bundle methods

[Kiw85], the gradient sampling method [BLO05] and the BFGS method [LO], are

based on sampling gradient or subgradient information, the results given here for

f suggest that limitation of convergence results to Clarke stationary points may be

unavoidable, in the sense that one may not in general be able to expect stronger

results such as convergence only to Mordukhovich stationary points. Nonetheless,

it remains an open question as to whether the nonminimizing Clarke stationary

points of f are actually points of attraction for methods using exact arithmetic.
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Part III

Halftoning and sigma-delta

quantization
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Chapter 6

Optimization-based halftoning

and sigma-delta quantization

6.1 Introduction

Digital halftoning is a core process governing most digital printing and many

display devices by which continuous tone images are converted to discrete-tone

images where only a limited number of tones are available. In this chapter, we focus

only on gray-scale images although (digital) halftoning applies to color images as

well. Given a gray-scale image f : G→ [0, 1] on an integer grid G := {1, . . . , nx}×

{1, . . . , ny}, (digital) halftoning is the process of forming an image consisting of

only black and white dots that resembles the original gray-scale image as much as

possible. The number of black dots depends on how dark the image is.

There have been many different approaches to this problem: error diffusion,

least square error minimization, global search or direct binary search (DBS),

threshold halftoning methods such as ordered dithering and stochastic dithering
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Figure 6.1: A halftone image obtained with the minimization of the energy (6.1),
taken from [TSG+11].

to name a few (see [Uli87] for a detailed reference). Perhaps the most popular

approach is the error diffusion algorithm of Floyd and Steinberg [Flo76] due to

its efficiency and low computational complexity. In fact, it is crucial to design

halftoning algorithms with linear or almost linear complexity in the number of

pixel points; otherwise, it would not be practical for printers and display devices.

Since the judge of the quality of the halftoned image is a human observer,

halftoning algorithms are often based on the properties of the human visual sys-

tem (HVS). For example, in the DBS algorithm, the resulting halftoned image

minimizes an HVS-based cost function that measures the perceived error between

the gray-scale image and the halftone image.

Mots of the existing halftoning methods are local in the sense that the decision

of placing a black dot in a certain position is made by considering only nearby gray

values but not the whole picture. A recent approach, introduced in [TSG+11], is
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a non-local method that formulates halftoning as a global energy minimization

problem for the first time to our knowledge. Their energy functional is a difference

of two convex functionals, one for the attraction of the black dots to be inserted

for halftoning, which we denote by halftoning dots, to the image gray values, and

the other one for the repulsion between the dots. Figure 6.1 shows an example

of a halftone image obtained this way. Let m be the number of halftoning dots,

located at the positions p := {pk}mk=1 where the k-th location pk has coordinates

(pk,x pk,y)
T ∈ G and where T denotes transpose. The optimal locations are given

by the minimizer(s) of the energy

E(p) =
m∑
k=1

∑
(i,j)∈G

wij

∣∣∣∣pk − (
i

j

)∣∣∣∣− m∑
k=1

m∑
l=k+1

|pk − pl| (6.1)

where wij = 1 − fij is the gray value of the pixel (i, j) (0 for white, 1 for black)

and m := ⌊
∑

i,j wij⌋. This choice of m can be explained by the fact that HVS

is a low-pass filter that averages pixel values. For the halftone image to resemble

the original image, the average of the gray values of the halftone image should

approximately match that of the original image, i.e., m
nxny

should be close to
∑

i,j wij

nxny
.

Since m is an integer, it is reasonable to set m to the integer part of
∑

i,j wij as

above. For simplicity of the presentation, we assume that
∑

i,j wij is an integer,

i.e. we have

m =
∑
i,j

wij. (6.2)

The following generalized energy

Eφ(p) =
m∑
k=1

∑
(i,j)∈G

wijφ

(∣∣∣∣pk − (
i

j

)∣∣∣∣)− λ m∑
k=1

m∑
l=k+1

φ (|pk − pl|) (6.3)
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is also considered in [TSG+11] where the function φ : [0,∞]→ R is chosen to make

Eφ coercive. It is possible to motivate such an energy by electrostatics, viewing

the halftoning dots and pixels as point charges. Note that in two dimensions the

force that a point particle k at position pk with charge wk applies to an other point

particle l at position pl with charge wl is given by

Fk,l =
cwkwl

||pk − pl||
ek,l =

cwkwl

||pk − pl||2
(pk − pl) (6.4)

where ek−l :=
pk−pl

||pk−pl||
is the unit vector from particle k to l and c is a positive

constant. A positive force implies it is repulsive, while a negative force implies

it is attractive. It is reasonable to introduce an electrostatic repulsion between

the halftoning dots because in practice, we want dispersion of the dots in the

uniformly colored regions. On the other hand, in the textured regions or at image

boundaries, we want halftoning dots be close to darker regions. These constraints

can be satisfied by adding an attractive electrostatic force between each pixel and

each halftoning dot, a force proportional to the gray values wij of the image. It is

also natural to choose the charge of the halftoning dots to be the same, as otherwise

some points would have a bigger impact on the overall system. Without loss of

generality we can choose the charge of pk’s to be +1. The overall system can be

thought of as consisting of m positively charged particles (halftoning dots) with

charge +1 that repel each other, and are attracted by the particles with charge

−wij at pixel (i, j) for all (i, j) ∈ G. For an equilibrium to be reached, the overall

charge of the system should be zero, as indeed is the case by the condition (6.2).
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The overall force acting on a particle at position pk will be

Fk = c

∑
i,j

−wij

(
pk −

(
i
j

))
||pk −

(
i
j

)
||2

+
∑
l ̸=k

(pl − pk)
||pl − pk||2

 . (6.5)

Let Ẽ(p) be the total electrostatic potential of this system of point particles. Using

− ∂Ẽ
∂pk

= Fk and integrating (6.5) gives the electrostatic potential energy of the

system

Ẽ(p) = c

 m∑
k=1

∑
(i,j)∈G

wij log

(∣∣∣∣pk − (
i

j

)∣∣∣∣)− m∑
k=1

m∑
l=k+1

log (|pk − pl|)

 (6.6)

which is (6.3) (up to a constant factor c) with φ(s) = log(s). The appearance

of log terms in the energy is due to the fact that φ(s) = log(s) is a fundamental

solution (a nonconstant solution with rotational symmetry) for Laplace equation

in two dimensions.

Note that the energy (6.1) corresponds to φ(s) = |s| which amounts to a

non-decaying repulsion (or attraction) with distance |s| when compared to the

φ(s) = log(s) case where the decay is O(1/|s|). In this sense, the energy (6.1)

is more sensitive to the long-distance interactions among the halftoning dots and

pixels.

It is easy to find examples showing that the energy (6.3) is in general not convex.

Consider a uniformly colored 2×2 grid with wij = 1/2 for i = 1, 2 and j = 1, 2 with

φ(s) = |s|. The points p̂ and p̄ are both optimizers with p̂1 = (1, 1), p̂2 = (2, 2),

p̄1 = (2, 1) and p̄2 = (1, 2); however p̂+p̄
2

is not, showing nonconvexity of E.

Approximating optimizer(s) of the energy (6.1) or (6.3) with an explicit formula

is hard in its full generality; however in one dimension, the energy (6.1) is convex
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and an explicit solution is available [TSG+11]. It will be shown in this thesis that

this solution is related to (one-bit first-order) sigma-delta quantization. In the

next section, we discuss this connection.

6.2 One-dimensional problem

For a one-dimensional signal {wj}nj=1 the energy functional (6.1) becomes

E(p) =
m∑
k=1

n∑
j=1

wj |pk − j| −
m∑
k=1

m∑
l=k+1

|pk − pl| (6.7)

with n = nx. Assuming that pk’s are in ascending order, i.e., p1 ≤ p2 ≤ ... ≤ pm,

this energy becomes

E(p) =
m∑
k=1

( n∑
j=1

wj |pk − j|+ (m− 2k + 1)pk

)
(6.8)

which, being a sum of convex and linear functionals, is convex.

By convex calculus, it is possible to compute the minimizer(s) of (6.8) (see

[TSG+11, Theorem 3.1]). In particular, p̂ is a minimizer with

p̂k = min{r : ar−1 < k − 1

2
≤ ar, r ≥ 1}, k = 1, 2, · · · , n (6.9)

where a0 := 0 and ar :=
∑r

j=1w(j) for r ≥ 1 is the cumulative sum of the pixel

values {wj}nj=1. The k-th halftoning dot p̂k depends only on the positions of the

previous ones p̂1, p̂2, · · · , p̂k−1; in other words, only on the values wj for j ≤ p̂k.

This is somehow unexpected since there are interactions between all the pairs of

halftoning dots.
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Note that in (6.9) the halftoning dots are all different from each other. Indeed,

placing two black dots or placing only one dot at a particular location would result

in the same halftone image. So we assume that the halftoning dots are all distinct

from each other. We also assume that the dots are lying on the same grid as the

pixels, which is the case in practice. Then, one can identify the points {pk}mk=1

with the {0, 1}-valued sequence {Qj}nj=1 where Qj = 1 if and only if there exists a

halftoning dot at the j-th pixel location. This allows us to reformulate the energy

functional (6.7) in the space of binary-valued sequences, and the resulting energy

functional is

E(Q) =
∑
i

∑
j

|i− j|wjQi −
1

2

∑
i

∑
j

|i− j|QiQj (6.10)

=
⟨
Q, | · | ∗ (w − 1

2
Q)

⟩
(6.11)

where, for notational convenience, w and Q are one-sided infinite sequences ob-

tained from {wj}nj=1, {Qj}nj=1 by zero padding, i.e. wj := 0, Qj := 0 for j > n and

j = 0. The convolution operator ∗ and the dot product ⟨·, ·⟩ are defined in the

usual way with (a ∗ b)j :=
∑j

k=0 akbj−k, ⟨a, b⟩ :=
∑∞

j=0 ajbj for square-summable

sequences a and b.

6.2.1 Necessary conditions

The energy functional (6.10) is to be minimized over the set of {0,1}-valued

sequences whose sum is equal to m. Let Q̂ be a local optimizer of (6.10) (hence a

global optimizer by convexity in the p-coordinates). At an optimizer, the energy

cannot decrease if two entries of Q̂ are swapped, i.e., if the values of Qℓ and Qm

are swapped for any ℓ and m. In particular, if Qℓ = 1 and Qm = 0 for some ℓ and
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m (necessarily distinct), we have

E(Q̂+ δm − δℓ) ≥ E(Q̂) (6.12)

where we use δj to denote the sequence consisting of zeros except a one in location

j, i.e.

δjk =


1 if k = j

0 if k ̸= j .

(6.13)

Computing the left-hand side of (6.12) using (6.10), we obtain

E(Q̂) ≤ E(Q̂+ δm − δℓ) (6.14)

=
⟨
Q+ δm − δℓ, | · | ∗ (w −

1

2
Q+

δℓ
2
− δm

2
)
⟩

(6.15)

= E(Q̂) +
⟨
δm − δℓ, | · | ∗ (w −

1

2
Q)

⟩
+
⟨
δℓ, | · | ∗

δm
2

⟩
(6.16)

+
⟨
δm, | · | ∗

δℓ
2

⟩
+
⟨
Q, | · | ∗ (δℓ

2
− δm

2
)
⟩

(6.17)

= E(Q̂) +
⟨
| · −m| − | · −ℓ|, q − Q

2

⟩
+ |ℓ−m| (6.18)

+
⟨Q
2
, | · −ℓ|

⟩
−

⟨
Q,
| · −m|

2

⟩
(6.19)

= E(Q̂) +
⟨
w −Q, | · −m| − | · −ℓ|

⟩
+ |ℓ−m| (6.20)

where in the second equality we used the fact that ⟨δℓ, | · | ∗ δℓ
2
⟩ = ⟨δm, | · | ∗ δm

2
⟩ = 0.

The equation (6.20) is only valid for all ℓ and m with Q(ℓ) = 1 and Q(m) = 0;

however by swapping the variables ℓ and m, it easily generalizes to the following

necessary condition for optimality which applies to all ℓ and m:

(
Qℓ −Qm

)⟨
w −Q, | · −m| − | · −ℓ|

⟩
+
∣∣∣ℓ−m∣∣∣ ≥ 0 ∀ℓ,∀m. (6.21)
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(Note that by modifying more than 2 pixel values at a time a second order necessary

condition can also be obtained with similar arguments.)

Let ℓ,m ∈ N be such that Q̂ℓ = 1, Q̂m = 0 and m = ℓ− 1. Then we have from

(6.21)

−
ℓ−1∑
j=1

(wj − Q̂j) +
n∑
ℓ

(wj − Q̂j) + 1 ≥ 0. (6.22)

Since we have
∑n

j=1(wj − Q̂j) = 0 and wℓ − Q̂ℓ = wℓ − 1 ≤ 0 in (6.22), we obtain

ℓ∑
j=1

(wj − Q̂j) ≤
ℓ−1∑
j=1

(wj − Q̂j) ≤
1

2
. (6.23)

Similarly, for ℓ,m satisfying Q̂ℓ = 1, Q̂m = 0 and m = ℓ+ 1, we get

− 1

2
≤

ℓ∑
j=1

(wj − Q̂j). (6.24)

Let ℓ2 ≥ ℓ1 ≥ 1 be integers such that Q̂s = 1 for s ∈ [ℓ1, ℓ2], Qℓ1−1 = 0 and

Q̂ℓ2+1 = 0. Applying (6.23) with ℓ = ℓ1 and (6.24) with ℓ = ℓ2 we obtain

− 1

2
≤

l2∑
j=1

(wj − Q̂j) ≤
s∑

j=1

(wj − Q̂j) ≤
ℓ1∑
j=1

(wj − Q̂j) ≤
1

2
(6.25)

where in the second and third inequality above we used the fact that ws − Q̂s ≤ 0

for s ∈ [l1, l2]. The upper and lower bounds obtained in (6.25) for
∑s

j=1(wj − Q̂j)

makes the assumption that Q̂s = 1. The following proposition shows that this

assumption can actually be removed.

Proposition 6.2.1. Let Q̂ be an optimizer of the energy functional (6.10). For

157



all k ≥ 1, we have the upper and lower bounds

−1

2
≤

k∑
j=1

(wj − Q̂j) ≤
1

2
.

Proof. Let k ≥ 1 be given. If Q̂k = 1, then the proof follows from (6.25). Other-

wise, we have Q̂k = 0. The main idea is to look for integers ℓ, ℓ close to k to which

inequalities (6.25) apply. Let bk :=
∑k

j=1 Q̂j, the cumulative sum of Q̂. It is clear

that 0 ≤ bk ≤ m. There are three cases:

(1) 0 < bk < m: There exist positive integers ℓ and ℓ where ℓ is the largest

integer such that ℓ < k and Q̂ℓ = 1 and ℓ is the smallest integer such that

ℓ > k and Q̂ℓ = 1. We have also bℓ = bk and bℓ = bk + 1. By an application

of (6.24) with ℓ = ℓ, we get

−1

2
≤

ℓ∑
j=1

(wj − Q̂j) ≤
( k∑

j=1

wj

)
− bℓ =

k∑
j=1

(wj − Q̂j).

Similarly, choosing ℓ = ℓ in (6.23) we get

k∑
j=1

(wj − Q̂j) ≤
ℓ−1∑
j=1

(wj − Q̂j) ≤
1

2
.

(2) bk = 0: Proving the lower bound is straightforward, since we have

k∑
j=1

(wj − Q̂j) =
k∑

j=1

wj ≥ 0.

For the upper bound, it suffices to apply (6.23) with l = ℓ where ℓ is the

smallest positive integer (larger than k) such that Qℓ = 1.
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(3) bk = m: The upper bound follows from

k∑
j=1

(wj − Q̂j) =
( k∑

j=1

wj

)
−m ≤ 0

where we used
∑

j wj = m. The lower bound follows from similar arguments.

Proposition 6.2.1 provides a connection between the energy functional and the

sigma-delta (Σ∆) quantization as we shall explain. Given an input sequence

{wj}∞j=1 with values in [0, 1], the first-order Σ∆ scheme constructs a binary se-

quence Q̃ such that

sup
n1,n2∈N+

∣∣∣ n2∑
n1

(wj − Q̃j)
∣∣∣ ≤M (6.26)

for some constant M . One way to achieve this bound is to look for a bounded

solution u of the difference equation

uk − uk−1 = wk − Q̃k, u0 = 0 (6.27)

so that

uk =
k∑

j=1

(wj − Q̃j) (6.28)

and hence the supremum in (6.26) stays bounded uniformly over k. The initial

value u0 in (6.27) can be taken arbitrarily, but we set it to zero for convenience.

A standard quantization rule that leads to a bounded solution u is given by the

greedy rule which minimizes |uk| given uk−1 and wk, i.e.

Q̃k = arg min
b∈{0,1}

|uk−1 + wk − b|.
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Proposition 6.2.1 shows that a global optimizer Q̂ (of the energy functional (6.10))

satisfies (6.26) and so it corresponds to the output of a first-order Σ∆ scheme for

the input signal {wj}∞j=1. The following proposition complements this result by

showing that one-bit sigma-delta quantization with greedy rule can be formulated

as an optimization problem where the minimization objective coincides with the

energy (6.10) (up to an additive constant).

Proposition 6.2.2. Let u be a bounded solution of the difference equation (6.27).

The energy functional (6.10) can be rewritten as

E(Q) =
n∑

k=1

u2k + constant(w, n) (6.29)

and is minimized in a first-order Σ∆ scheme with the greedy rule.

Proof. The greedy rule minimizes |uk| given uk−1 and wk for all k. Furthermore,

by induction and using (6.28), it is easy to see that it minimizes |uk| for all k over

all {Qj}nj=1. Thus, the energy functional

Ē(Q) :=
n∑

k=1

u2k =
n∑

k=1

( k∑
j=1

(wj −Qj)
)2

(6.30)

is minimized in a first-order Σ∆ scheme. We will show that Ē(Q) is equal to E(Q)

up to a constant. We compute

Ē(Q) =
n∑

k=1

( k∑
j=1

(wj −Qj)
)2

=
n∑

k=1

k∑
i=1

k∑
j=1

wiwj +
n∑

k=1

k∑
i=1

k∑
j=1

QiQj − 2
n∑

k=1

k∑
i=1

k∑
j=1

wjQi
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We have

n∑
k=1

k∑
i=1

k∑
j=1

QiQj =
n∑

i=1

n∑
j=1

(n−max(i, j) + 1)QiQj

= (n+ 1)
n∑

i=1

n∑
j=1

QiQj −
n∑

i=1

n∑
j=1

max(i, j)QiQj

= (n+ 1)m2 −
m∑
k=1

m∑
l=1

max(pk, pl)

= (n+ 1)m2 −
m∑
k=1

m∑
l=1

(pk + pl
2

+
|pk − pl|

2

)
= (n+ 1)m2 −

m∑
k=1

m∑
l=1

(pk + pl
2

)
−

m∑
k=1

m∑
l=k+1

|pk − pl|

= (n+ 1)m2 −
m∑
k=1

m∑
l=1

pk −
m∑
k=1

m∑
l=k+1

|pk − pl|

= (n+ 1)m2 −m
m∑
k=1

pk −
m∑
k=1

m∑
l=k+1

|pk − pl|

where we used
∑

iQi = m, a condition that is automatically satisfied in Σ∆ given

that
∑

j wj = m. Similarly, we have

n∑
k=1

k∑
i=1

k∑
j=1

wjQi =
n∑

i=1

n∑
j=1

(n−max(i, j) + 1)wjQi

=
n∑

i=1

n∑
j=1

(n+ 1)wjQi −
n∑

i=1

n∑
j=1

max(i, j)wjQi

= (n+ 1)m2 −
m∑
k=1

n∑
j=1

max(pk, j)wj

= (n+ 1)m2 −
m∑
k=1

n∑
j=1

(pk + j

2
+
|pk − j|

2

)
wj

= (n+ 1)m2 − m

2

m∑
k=1

pk −
m

2

n∑
j=1

jwj −
m∑
k=1

n∑
j=1

|pk − j|
2

wj
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where we have used again the fact that
∑

iQi =
∑

j wj = m. Hence,

Ē(Q) =
n∑

k=1

k∑
i=1

k∑
j=1

wiwj +
n∑

k=1

k∑
i=1

k∑
j=1

QiQj − 2
n∑

k=1

k∑
i=1

k∑
j=1

wjQi (6.31)

=
m∑
k=1

n∑
j=1

|pk − j|wj −
m∑
k=1

m∑
l=k+1

|pk − pl|+ constant(w, n) (6.32)

is the same as the energy functional (6.7) (which is equivalent to (6.10)) up to an

additive constant that depends on w and n. This completes the proof.

Remark 6.2.3. Computing Ē(Q) using matrix notation is an alternative. Let S

be the operator that maps a sequence to its cumulative sums, i.e.,

(Sz)j :=

j∑
m=1

zm.

The matrix representation of S is given by Sij = 1 if i ≥ j, Sij = 0 otherwise. We

compute

Ē(Q) = ||S(w −Q)||22 (6.33)

= ⟨S(w −Q), S(w −Q)⟩ (6.34)

= ⟨Sw, Sw⟩+ ⟨SQ, SQ⟩ − 2⟨SQ, Sw⟩. (6.35)

162



We have also

⟨SQ, SQ⟩ = ⟨
m∑
k=1

S(:, pk),
m∑
l=1

S(:, pl)⟩ (6.36)

=
m∑
k=1

m∑
l=1

⟨S(:, pk), S(:, pl)⟩ (6.37)

=
m∑
k=1

m∑
l=1

n∑
j=1

S(j, pk)S(j, pl) (6.38)

=
m∑
k=1

m∑
l=1

(n−max(pk, pl) + 1) (6.39)

where we used the Matlab notation S(:, j) to refer to jth column of S. Similarly,

⟨SQ, Sw⟩ = ⟨
m∑
k=1

S(:, pk),
n∑

l=1

S(:, l)wl⟩ (6.40)

=
m∑
k=1

n∑
l=1

⟨S(:, pk), S(:, l)wl⟩ (6.41)

=
m∑
k=1

n∑
l=1

n∑
j=1

S(j, pk)S(j, l)wl (6.42)

=
m∑
k=1

n∑
l=1

(n−max(pk, l) + 1)wl. (6.43)

Plugging (6.39) and (6.43) into (6.35) and using the identities
∑

j wj = m and

max(i, j) = i+j
2

+ |i−j|
2

, we get the formula (6.32).

6.3 Conclusion of the chapter

We have shown the equivalence between an optimization-based halftoning ap-

proach and first-order Σ∆ quantization. Any minimizer of the energy (6.1) in one

dimension, corresponds to the output of a first-order Σ∆ scheme which is a dy-
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namical system. Hence, halftoning can be performed in linear time (in the number

of pixels). In addition, we showed that a first-order Σ∆ scheme with greedy rule

minimizes the same energy.

In two dimensions, simple examples show that an optimizer cannot be the out-

put of a recursive dynamical system such as a first-order Σ∆ quantizer due to the

interactions between the halftoning dots; however it might be possible to approxi-

mate the optimizer(s) with a dynamical system. Sticking to φ(s) = log(s) seems to

be a better choice in search for the approximate equivalence since then the inter-

actions between the distant halftoning dots would be much smaller in magnitude

as explained in Section 6.1. This is a subject for future work. In addition, apply-

ing higher-order sigma-delta quantization techniques to the halftoning of images

is currently under investigation.
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[Sze39] G. Szegö. Orthogonal Polynomials. American Mathematical Society,

New York, 1939. American Mathematical Society Colloquium Publi-

cations, v. 23.

177



[TE05] L. N. Trefethen and M. Embree. Spectra and Pseudospectra: the Be-

havior of Nonnormal Matrices and Operators. Princeton University

Press, 2005.

[TSG+11] T. Teuber, G. Steidl, P. Gwosdek, C. Schmaltz, and J. Weickert.

Dithering by differences of convex functions. SIAM Journal on Imag-

ing Sciences, 4:79, 2011.

[Uli87] R. Ulichney. Digital Halftoning. Mit Press, 1987.

[VL85] C. Van Loan. How near is a stable matrix to an unstable matrix?

In Linear algebra and its role in systems theory (Brunswick, Maine,

1984), volume 47 of Contemp. Math., pages 465–478. Amer. Math.

Soc., Providence, RI, 1985.

[Wim91] H.K. Wimmer. Normal forms of symplectic pencils and the discrete-

time algebraic Riccati equation. Linear Algebra and its Applications,

147:411–440, 1991.

[Wri02a] T.G. Wright. Eigtool: a graphical tool for nonsymmetric eigen-

problems. Oxford University Computing Laboratory, 2002.

http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.

[Wri02b] T.G. Wright. EigTool: a graphical tool for nonsymmetric

eigenproblems, 2002. Oxford University Computer Laboratory,

http://web.comlab.ox.ac.uk/pseudospectra/eigtool/.

[ZGD95] K. Zhou, K. Glover, and J. Doyle. Robust and Optimal Control. Pren-

tice Hall, 1995.

178


