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Abstract. We focus on the problem of minimizing the sum of smooth component functions
(where the sum is strongly convex) and a nonsmooth convex function, which arises in regularized
empirical risk minimization in machine learning and distributed constrained optimization in wireless
sensor networks and smart grids. We consider solving this problem using the proximal incremental
aggregated gradient (PIAG) method, which at each iteration moves along an aggregated gradient
(formed by incrementally updating gradients of component functions according to a deterministic
order) and takes a proximal step with respect to the nonsmooth function. While the convergence
properties of this method with randomized orders (in updating gradients of component functions)
have been investigated, this paper, to the best of our knowledge, is the first study that establishes
the convergence rate properties of the PIAG method for any deterministic order. In particular, we
show that the PIAG algorithm is globally convergent with a linear rate provided that the step size
is sufficiently small. We explicitly identify the rate of convergence and the corresponding step size
to achieve this convergence rate. Our results improve upon the best known condition number and
gradient delay bound dependence of the convergence rate of the incremental aggregated gradient
methods used for minimizing a sum of smooth functions.
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1. Introduction. We focus on composite additive cost optimization problems,
where the objective function is given by the sum of m component functions fi(x) and
a possibly nonsmooth regularization function r(x):

(1.1) min
x∈Rn

F (x) , f(x) + r(x),

and f(x) = 1
m

∑m
i=1 fi(x). We assume each component function fi : Rn → (−∞,∞)

is continuously differentiable and the sum of the component functions f is strongly
convex, while the regularization function r : Rn → (−∞,∞] is proper, closed, and
convex but not necessarily differentiable. This formulation arises in many problems
in machine learning [19,37,42], distributed optimization [13,24,25,32], and signal pro-
cessing [8,11,14]. Notable examples include constrained and regularized least squares
problems that arise in various machine learning applications [9, 30, 41], distributed
optimization problems that arise in wireless sensor network [28, 35] as well as smart
grid applications [15, 16] and constrained optimization of separable problems [2, 31].
An important feature of this formulation is that the number of component functions
m is large, hence solving this problem using a standard gradient method that involves
evaluating the full gradient of f(x), i.e., ∇f(x) = 1

m

∑m
i=1∇fi(x), is costly. This mo-

tivates using incremental methods that exploit the additive structure of the problem
and update the decision vector using one component function at a time.
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GLOBAL CONVERGENCE RATE OF PIAG METHODS 1283

When r is continuously differentiable, one widely studied approach is the incre-
mental gradient (IG) method [2, 27, 36]. The IG method processes the component
functions one at a time by taking steps along the gradient of each individual func-
tion in a sequential manner, following a cyclic order [39, 40] or a randomized or-
der [18,33,40]. A particular randomized order, which at each iteration independently
picks a component function uniformly at random from all component functions, leads
to the popular stochastic gradient descent (SGD) method. While SGD is the method
of choice in practice for many machine learning applications due to its superior empir-
ical performance and convergence rate estimates that do not depend on the number of
component functions m, its convergence rate is sublinear, i.e., an ε-optimal solution
can be computed within O(1/ε) iterations, where a vector x ∈ Rn is an ε-optimal
solution if F (x) − F (x∗) ≤ ε and x∗ is the minimizer of F . In a seminal paper,
Blatt et al. [6] proposed the incremental aggregated gradient (IAG) method, which
maintains the savings associated with incrementally accessing the component func-
tions, but keeps the most recent component gradients in memory to approximate the
full gradient ∇f(x) and updates the iterate using this aggregated gradient. Blatt
et al. showed that under some assumptions, for a sufficiently small constant step
size, the IAG method is globally convergent, and when the component functions are
quadratics it achieves a linear rate. Two recent papers, [34] and [17], investigated the
convergence rate of this method for general component functions that are convex and
smooth (i.e., with Lipschitz gradients), where the sum of the component functions
is strongly convex. In [34], the authors focused on a randomized version, called the
stochastic average gradient (SAG) method (which samples the component functions
independently, similarly to SGD), and showed that it achieves a linear rate using a
proof that relies on the stochastic nature of the algorithm. In a more recent work [17],
the authors focused on deterministic IAG (i.e., component functions processed using
an arbitrary deterministic order) and provided a simple analysis that uses a delayed
dynamical system approach to study the evolution of the iterates generated by this
algorithm.

While these recent advances suggest IAG as a promising approach with fast con-
vergence rate guarantees for solving additive cost problems, in many applications
listed above, the objective function takes a composite form and includes a nonsmooth
regularization function r(x) (to avoid overfitting or to induce a sparse representation).
Another important case of interest is smooth constrained optimization problems which
can be represented in the composite form (1.1), where the function r(x) is the indicator
function of a nonempty closed convex set.

In this paper, we study the proximal incremental aggregated gradient (PIAG)
method for solving composite additive cost optimization problems. Our method com-
putes an aggregated gradient for the function f(x) (with component gradients evalu-
ated in a deterministic manner at outdated iterates over a finite window K, similar
to IAG) and uses a proximal operator with respect to the regularization function r(x)
at the intermediate iterate obtained by moving along the aggregated gradient. Under
the assumptions that f(x) is strongly convex and each fi(x) is smooth with Lips-
chitz gradients, we show the first linear convergence rate result for the deterministic
PIAG and provide explicit convergence rate estimates that highlight the dependence
on the condition number of the problem (which we denote by Q) and the gradient de-
lay bound K over which outdated component gradients are evaluated. In particular,
we show that in order to achieve an ε-optimal solution, the PIAG algorithm requiresD
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1284 N. D. VANLI, M. GÜRBÜZBALABAN, AND A. OZDAGLAR

O(QK log(1/ε)) iterations.1 This result improves upon the condition number and gra-
dient delay bound dependence of the deterministic IAG for smooth problems; see [17],
where the authors proved that to achieve an ε-optimal solution, the IAG algorithm
requires O(Q2K2 log(1/ε)) iterations. We also note that three recent independent
papers [12, 21, 26] have analyzed the convergence rate of the prox-gradient algorithm
(which is a special case of our algorithm with K = 0, i.e., where we have access
to a full gradient at each iteration instead of an aggregated gradient) under strong
convexity-type assumptions and provided linear rate estimates. As we highlight in
Remark 3.6, our analysis can be extended to nonstrongly convex settings using similar
assumptions as in [12, 21, 26] (such as quadratic functional growth or an error bound
condition). Our rate estimates for the PIAG algorithm with K > 0 matches the
condition number dependence of the prox-gradient algorithm provided in [12, 21, 26].
Furthermore, for the case in which K = 0 (i.e., for the prox-gradient algorithm), the
rate estimates obtained using our analysis technique has the same condition number
dependence as the ones presented in [12,21,26].

Our analysis uses function values to track the evolution of the iterates generated
by the PIAG algorithm. This is in contrast with the recent analysis of the IAG algo-
rithm provided in [17], which used distances of the iterates to the optimal solution as a
Lyapunov function and relied on the smoothness of the problem to bound the gradient
errors with distances. This approach does not extend to the nonsmooth composite
case, which motivates a new analysis using function values and the properties of the
proximal operator. Since we work directly with function values, this approach also
allows us to obtain iteration complexity results to achieve an ε-optimal solution.

In terms of the algorithmic structure, our paper is related to [9], where the au-
thors introduced the SAGA method, which extends the SAG method to the composite
case and provides a linear convergence rate result with an analysis that relies on the
stochastic nature of the algorithm and does not extend to the deterministic case. In
particular, the SAGA method samples the component functions randomly and inde-
pendently at each iteration without replacement (in contrast with the PIAG method,
where the component functions are processed deterministically). However, such ran-
dom sampling may not be possible for applications such as decentralized information
processing in wireless sensor networks (where agents are subject to communication
constraints imposed by the network topology and all agents are not necessarily con-
nected to every other agent via a low-cost link [28]), motivating the study of the
deterministic PIAG method. In addition to being a natural order for such appli-
cations, deterministic orders are also important to consider since their analysis for
incremental methods could be the key for understanding the convergence behavior
of general component function sampling schemes [18]. In [9], the authors prove that
to achieve a point in the ε-neighborhood of the optimal solution, SAGA requires
O(max(Q,K) log(1/ε)) iterations, where a vector x ∈ Rn is in the ε-neighborhood
of an optimal solution x∗ if ||x− x∗|| ≤ ε. However, note that this result does not
translate into a guarantee in the function suboptimality of the resulting point because
of lack of smoothness. Furthermore, the choice of Lyapunov function in [9] requires
each fi(x) to be convex (to satisfy the nonnegativity condition), whereas we do not
need this assumption in our analysis.

A recent and independent work [1] also studied the convergence rate of the PIAG
algorithm. Similar to [9, 17], the authors used the distance to the optimal solution

1The actual dependence on K is O(QK log(1/ε)), and hence, for the K = 0 case, iteration
complexity reduces to O(Q log(1/ε)).
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as a Lyapunov function and proved linear convergence results. In particular, the
authors proved that to achieve a point in the ε-neighborhood of the optimal solution,
PIAG requires O(QK2 log(1/ε)) iterations. Similar to [9], this convergence rate on
distances does not translate into a linear convergence rate in function suboptimality as
the problem (1.1) is not smooth. Furthermore, the dependence of the convergence rate
on the gradient delay bound is quadratic in [1], whereas we prove a linear dependence
in this paper.

Our work is also related to [39], where the authors proposed a related linearly
convergent incrementally updated gradient method for solving the composite additive
cost problem in (1.1) under a local Lipschitzian error condition (a condition satisfied
by locally strongly convex functions around an optimal solution). The PIAG algo-
rithm is different from the algorithm proposed in [39]. Specifically, for constrained
optimization problems (i.e., when the regularization function is the indicator function
of a nonempty closed convex set), the iterates generated by the algorithm in [39] stay
in the interior of the set since the algorithm in [39] searches for a feasible update
direction. On the other hand, the PIAG algorithm uses the proximal map on the
intermediate iterate obtained by moving in the opposite direction of the aggregated
gradient, which operates as a projected gradient method and allows the iterates to be
on the boundary of the set. Aside from algorithmic differences, [39] does not provide
explicit rate estimates (even though the exact rate can be calculated after an elabo-
rate analysis, the dependence on the condition number and the window length of the
outdated gradients is significantly worse than the one presented in this paper). Fur-
thermore, the results in [39] provide a K-step linear convergence, whereas the linear
convergence results in our paper hold uniformly for each step.

Other than the papers mentioned above, our paper is also related to [5], which
studies an alternative incremental aggregated proximal method and shows linear con-
vergence when each fi(x) and r(x) are continuously differentiable. This method forms
a linear approximation to f(x) and processes the component functions fi(x) with a
proximal iteration, whereas our method processes fi(x) based on a gradient step.
Furthermore, our linear convergence results do not require the differentiability of the
objective function r(x) in contrast to the analysis in [5].

Several recent papers in the machine learning literature (e.g., [9, 10, 20, 22, 23]
and references therein) are also weakly related to our paper. In all these papers, the
authors proposed randomized order algorithms similar to the SAG algorithm [34] and
analyzed their convergence rates in expectation. In particular, in [10], the authors
proposed an algorithm, called Finito, which is closely related to the SAG algorithm
but achieves a faster convergence rate than the SAG algorithm. These ideas were then
extended to composite optimization problems with nonsmooth objective functions (as
in (1.1)) in [9,23]. In particular, in [23], a majorization-minimization algorithm, called
MISO, was proposed to solve smooth optimization problems and its global linear
convergence was shown in expectation. In [22], the ideas in [23] were then extended
for nonsmooth optimization problems using proximal operators. Similarly, in [20], a
variance reduction technique was applied to the SGD algorithm for smooth problems
and its global linear convergence in expectation was proven.

The rest of the paper is organized as follows. In section 2, we introduce the PIAG
algorithm. In section 3, we first provide the assumptions on the objective functions
and then prove the global linear convergence of the proposed algorithm under these
assumptions. We conclude the paper in section 5 with a summary of our results.D
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1286 N. D. VANLI, M. GÜRBÜZBALABAN, AND A. OZDAGLAR

2. The PIAG algorithm. Similar to the IAG method, at each iteration k, we
form an aggregated gradient, which we define as

gk ,
1

m

m∑

i=1

∇fi(xτi,k),

where ∇fi(xτi,k) represents the gradient of the ith component function sampled at
time τi,k. We assume that each component function is sampled at least once in the
past K ≥ 0 iterations, i.e., we have

k −K ≤ τi,k ≤ k ∀i ∈ {1, . . . ,m}.

This condition is typically satisfied in practical implementations of the deterministic
incremental methods. For instance, if the functions are processed in a cyclic order, we
have K = m− 1 [18,39]. On the other hand, K = 0 corresponds to the case in which
we have the full gradient of the function f(x) at each iteration (i.e., gk = ∇f(xk)) and
small K may represent a setting in which the gradients of the component functions
are sent to a processor with some delay upper bounded by K.

Since the regularization function r is not necessarily differentiable, we propose
to solve (1.1) with the proximal incremental aggregated gradient (PIAG) method,
which uses the proximal operator with respect to the regularization function at the
intermediate iterate obtained using the aggregated gradient. In particular, the PIAG
algorithm, at each iteration k ≥ 0, updates xk as

(2.1) xk+1 = proxηr(xk − ηgk),

where η is a constant step size and the proximal mapping is defined as follows:

(2.2) proxηr(y) = arg min
x∈Rn

{
1

2
||x− y||2 + ηr(x)

}
.

Here, we define φ(x) , 1
2 ||x− y||

2
+ηr(x) and let ∂φ(x) denote the set of subgradients

of the function φ at x. Then, it follows from the optimality conditions [4] of the
problem in (2.2) that 0 ∈ ∂φ(xk+1). This yields xk+1 − (xk − ηgk) + ηhk+1 = 0 for
some hk+1 ∈ ∂r(xk+1). Hence, we can compactly represent our update rule as

(2.3) xk+1 = xk + ηdk,

where dk , −gk − hk+1 is the direction of the update at time k.

3. Convergence analysis.

3.1. Assumptions. Throughout the paper, we make the following standard as-
sumptions.

Assumption 3.1 (Lipschitz gradients). Each fi has Lipschitz continuous gradi-
ents on Rn with some constant Li ≥ 0, i.e.,

||∇fi(x)−∇fi(y)|| ≤ Li ||x− y||

for any x, y ∈ Rn.2

2If a function f has Lipschitz continuous gradients with some constant L, then f is called L-
smooth. We use these terms interchangeably.
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Defining L , 1
m

∑m
i=1 Li, we observe that Assumption 3.1 and the triangle in-

equality yield

||∇f(x)−∇f(y)|| ≤ L ||x− y||

for any x, y ∈ Rn, i.e., the function f is L-smooth.

Assumption 3.2 (subdifferentiability). The regularization function r : Rn →
(−∞,∞] is proper, closed, convex, and subdifferentiable everywhere in its effective
domain, i.e., ∂r(x) 6= ∅ for all x ∈ {y ∈ Rn : r(y) <∞}.

Assumption 3.3 (strong convexity). The sum function f is µ-strongly convex on

Rn for some µ > 0, i.e., the function x 7→ f(x)− µ
2 ||x||

2
is convex.

A consequence of Assumptions 3.2 and 3.3 is that F is strongly convex, and hence
there exists a unique optimal solution of problem (1.1) [29, Lemma 6], which we denote
by x∗.

We emphasize that these assumptions hold for a variety of cost functions including
regularized squared error loss, hinge loss, and logistic loss [7] and similar assumptions
are widely used to analyze the convergence properties of incremental gradient methods
in the literature [3,5,9,17,34]. Note that in contrast with many of these analyses, we
do not assume that the component functions fi are convex.

3.2. Rate of convergence. In this section, we show that the PIAG algorithm
attains a global linear convergence rate with a constant step size provided that the
step size is sufficiently small. We define

(3.1) Fk , F (xk)− F (x∗),

which is the suboptimality in the objective value at iteration k. In our analysis, we will
use Fk as a Lyapunov function to prove global linear convergence. Before providing
the main theorems of the paper, we first introduce three lemmas that contain key
relations in proving these theorems.

The first lemma investigates how the suboptimality in the objective value evolves
over the iterations. In particular, it shows that the change in suboptimality Fk+1−Fk
can be bounded as a sum of two terms: The first term is negative and has a linear
dependence in the step size η, whereas the second term is positive and has a quadratic
dependence in η. This suggests that if the step size η is small enough, the linear term
in η will be dominant guaranteeing a descent in suboptimality.

Lemma 3.4. Suppose that Assumptions 3.1 and 3.2 hold. Then, the PIAG algo-
rithm in (2.1) yields the following guarantee:

(3.2) Fk+1 ≤ Fk −
1

2
η ||dk||2 + η2

L

2

k−1∑

j=(k−K)+

||dj ||2

for any step size 0 < η ≤ 1
L(K+1) .

Proof. We first consider the difference of the errors in consecutive time instances
and write

F (xk+1)− F (xk) = f(xk+1)− f(xk) + r(xk+1)− r(xk)

≤ 〈∇f(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2 + r(xk+1)− r(xk),
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where the inequality follows from the Taylor series expansion of f around xk and since
the Hessian of f at any point is upper bounded by L by Assumption 3.1. Using the
update rule xk+1 = xk + ηdk in this inequality, we obtain

F (xk+1)− F (xk) ≤ η〈∇f(xk), dk〉+ η2
L

2
||dk||2 + r(xk+1)− r(xk)

= η〈∇f(xk)− gk, dk〉+ η2
L

2
||dk||2 + η〈gk, dk〉+ r(xk+1)− r(xk)

≤ η ||∇f(xk)− gk|| ||dk||+ η2
L

2
||dk||2 − η ||dk||2 − η〈hk+1, dk〉

+ r(xk+1)− r(xk)

= η ||∇f(xk)− gk|| ||dk||+ η

(
η
L

2
− 1

)
||dk||2 + 〈hk+1, xk − xk+1〉

+ r(xk+1)− r(xk)

≤ η ||∇f(xk)− gk|| ||dk||+ η

(
η
L

2
− 1

)
||dk||2 ,(3.3)

where the second inequality follows by the triangle inequality and the last inequality
follows from the convexity of r.

The gradient error term in (3.3), i.e., ||∇f(xk)− gk||, can be upper bounded as
follows:

||∇f(xk)− gk|| ≤
1

m

m∑

i=1

∣∣∣∣∇fi(xk)−∇fi(xτi,k)
∣∣∣∣

≤ 1

m

m∑

i=1

Li
∣∣∣∣xk − xτi,k

∣∣∣∣

≤ 1

m

m∑

i=1

Li

k−1∑

j=τi,k

η ||dj ||

≤ ηL
k−1∑

j=(k−K)+

||dj || ,(3.4)

where the first and third inequalities follow by the triangle inequality, the second
inequality follows since each fi is Li-smooth and the last inequality follows since
τi,k ≥ k −K. Using (3.4) we can upper bound (3.3) as follows:

F (xk+1)− F (xk) ≤ η
(
η
L

2
− 1

)
||dk||2 + η2L

k−1∑

j=(k−K)+

||dj || ||dk||

≤ η
(
η
L(K + 1)

2
− 1

)
||dk||2 + η2

L

2

k−1∑

j=(k−K)+

||dj ||2

≤ −η
2
||dk||2 + η2

L

2

k−1∑

j=(k−K)+

||dj ||2 ,(3.5)

where the second inequality follows from the arithmetic-geometric mean inequality,
i.e., ||dj || ||dk|| ≤ 1

2 (||dj ||2 + ||dk||2) and the last inequality follows since 0 < η ≤
1

L(K+1) . This concludes the proof of Lemma 3.4.
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We next introduce the following lemma, which can be viewed as an extension of
[38, Theorem 4] into our framework with aggregated gradients. We provide a simplified
proof compared to [38] with a tighter upper bound. This lemma can be interpreted
as follows. When the regularization function is zero (i.e., r(x) = 0 for all x ∈ Rn)
and we have access to full gradients (i.e., K = 0), this lemma simply follows from the
strong convexity of the sum function f since ||xk − x∗|| ≤ 1

µ ||∇f(xk)−∇f(x∗)|| and

∇f(x∗) = 0 due to the optimality condition of the problem. The following lemma
indicates that even though we do not have such control over the subgradients of the
regularization function (as the regularization function is neither strongly convex nor
smooth), the properties of the proximal step yield a similar relation at the expense
of a constant of 2 (instead of 1 compared to the r(x) = 0 case) and certain history
dependent terms (which arise due to the incremental nature of the PIAG algorithm)
that has a linear dependence in step size η. This lemma will be a key step in the
proof of Lemma 3.7, where we illustrate how the descent term in Lemma 3.4 relates
to our Lyapunov function.

Lemma 3.5. Suppose that Assumptions 3.1–3.3 hold and let Q = L/µ denote the
condition number of the problem. Then, the distance of the iterates from the optimal
solution is upper bounded as

||xk − x∗|| ≤
2

µ
||dk||+ 2ηQ

k−1∑

j=(k−K)+

||dj ||

for any k ≥ 0 and 0 < η ≤ 1
L .

Proof. Define

d′k , arg min
d∈Rn

{η
2
||∇f(xk) + d||2 + r(xk + ηd)

}
,

as the direction of update with the full gradient. The nonexpansiveness property of
the proximal map implies

||proxηr(x)− proxηr(y)||2 ≤ 〈proxηr(x)− proxηr(y), x− y〉.
Putting x = xk − η∇f(xk) and y = x∗ − η∇f(x∗) in the above inequality, we obtain

||xk + ηd′k − x∗||
2 ≤ 〈xk + ηd′k − x∗, xk − η∇f(xk)− x∗ + η∇f(x∗)〉

= 〈xk + ηd′k − x∗, xk + ηd′k − x∗〉
+ 〈xk + ηd′k − x∗, −ηd′k + η∇f(x∗)− η∇f(xk)〉,

which implies

0 ≤ 〈xk + ηd′k − x∗, −d′k +∇f(x∗)−∇f(xk)〉.
This inequality can be rewritten as follows:

〈xk − x∗, ∇f(xk)−∇f(x∗)〉 ≤ 〈xk − x∗, −d′k〉 − η ||d′k||
2

+ η〈d′k, ∇f(x∗)−∇f(xk)〉
≤ 〈xk − x∗, −d′k〉+ η〈d′k, ∇f(x∗)−∇f(xk)〉
≤ ||d′k|| (||xk − x∗||+ η ||∇f(x∗)−∇f(xk)||)
≤ ||d′k|| (||xk − x∗||+ ηL ||xk − x∗||)
≤ 2 ||d′k|| ||xk − x∗|| ,(3.6)
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1290 N. D. VANLI, M. GÜRBÜZBALABAN, AND A. OZDAGLAR

where the second inequality follows since − ||d′k||
2 ≤ 0, the third inequality follows by

the Cauchy–Schwarz inequality, the fourth inequality follows from the L-smoothness
of f , and the last inequality follows since η ≤ 1

L . Since µ-strong convexity of f implies

(3.7) µ ||xk − x∗||2 ≤ 〈xk − x∗, ∇f(xk)−∇f(x∗)〉,

combining (3.6) and (3.7) we obtain

(3.8) µ ||xk − x∗|| ≤ 2 ||d′k|| .

In order to relate d′k to the original direction of update dk, we use the triangle in-
equality and write

||d′k|| ≤ ||dk||+ ||d′k − dk||

= ||dk||+
1

η
||xk + ηd′k − xk − ηdk||

= ||dk||+
1

η
||proxηr(xk − η∇f(xk))− proxηr(xk − ηgk)||

≤ ||dk||+ ||gk −∇f(xk)||

≤ ||dk||+ ηL

k−1∑

j=(k−K)+

||dj || ,(3.9)

where the last line follows by (3.4). Putting (3.9) back into (3.8) concludes the proof
of Lemma 3.5.

Remark 3.6. Lemma 3.5 can also be extended for nonstrongly convex problems.
In particular, in the proof of Lemma 3.5, we use the strong convexity assumption
to arrive at inequality (3.8). This inequality is known as the error bound condition
for the prox-gradient mapping (cf. [12, Definition 3.1]). In the remainder of the
proof, we generalize this error bound condition for the PIAG algorithm (cf. (3.9)).
Hence, we can replace the strong convexity assumption by the error bound condition
assumption and Lemma 3.5 still holds (in the error bound condition case, x∗ need not
be unique, and therefore the distances should be defined with respect to the set of
optimal solutions as in [12]). In the remainder of the paper, we do not explicitly use
the strong convexity assumption but instead make use of Lemma 3.5. Hence, the rate
results we present hold under the error bound condition assumption (instead of the
strong convexity assumption) as well. We also emphasize that in [12, Corollary 3.6],
the authors show that the quadratic functional growth and error bound condition are
equivalent when f is C1-smooth and convex while r is closed and convex (which are the
same assumptions we make, excluding strong convexity). The quadratic functional
growth and error bound condition are, to our knowledge, the weakest assumptions
under which linear convergence of the prox-gradient algorithm is proven [12,21,26].

In the following lemma, we relate the direction of update to the suboptimality
in the objective value at a given iteration k. In particular, we show that the descent
term presented in Lemma 3.4 (i.e., − ||dk||2) can be upper bounded by the negative
of the suboptimality in the objective value of the next iteration (i.e., −Fk+1) and
additional history-dependent terms that arise due to the incremental nature of the
PIAG algorithm.
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Lemma 3.7. Suppose that Assumptions 3.1–3.3 hold. Then, for any 0 < η ≤
1

L(K+1) , the PIAG algorithm in (2.1) yields the following guarantee:

− ||dk||2 ≤ −
µ

4
Fk+1 + ηL

k−1∑

j=(k−K)+

||dj ||2 .

Proof. In order to prove this lemma, we use Lemma 3.5, which can be rewritten
as follows:

− ||dk|| ≤ −
µ

2
||xk − x∗||+ ηL

k−1∑

j=(k−K)+

||dj || .

Then, we can upper bound − ||dk||2 as

− ||dk||2 ≤ −
µ

2
||dk|| ||xk − x∗||+ ηL

k−1∑

j=(k−K)+

||dk|| ||dj ||

≤ −µ
2
〈dk, x∗ − xk〉+ η

KL

2
||dk||2 + η

L

2

k−1∑

j=(k−K)+

||dj ||2 ,(3.10)

where the last line follows by the Cauchy–Schwarz inequality and the arithmetic-
geometric mean inequality. We can upper bound the inner product term in (3.10)
as

−〈dk, x∗ − xk〉 = 〈gk + hk+1, x
∗ − xk〉

= 〈∇f(xk), x∗ − xk〉+ 〈hk+1, x
∗ − xk〉+ 〈gk −∇f(xk), x∗ − xk〉

≤ f(x∗)− f(xk) + 〈hk+1, x
∗ − xk+1〉+ η〈hk+1, dk〉

+ 〈gk −∇f(xk), x∗ − xk〉
≤ f(x∗)− f(xk) + r(x∗)− r(xk+1) + η〈hk+1, dk〉

+ ||gk −∇f(xk)|| ||x∗ − xk|| ,(3.11)

where the first inequality follows from the convexity of f and the second inequality
follows from the convexity of r and the triangle inequality. The inner product term
in (3.11) can be upper bounded as

η〈hk+1, dk〉 = −η ||dk||2 − 〈gk, ηdk〉
= −η ||dk||2 + 〈∇f(xk),−ηdk〉+ 〈gk −∇f(xk),−ηdk〉
≤ −η ||dk||2 + 〈∇f(xk), xk − xk+1〉+ η ||dk|| ||gk −∇f(xk)||

≤ −η ||dk||2 + f(xk)− f(xk+1) + η2
L

2
||dk||2 + η ||dk|| ||gk −∇f(xk)|| ,(3.12)

where the first inequality follows by the triangle inequality and the second inequality
follows from the L-smoothness of f . Putting (3.12) back in (3.11), we obtain
(3.13)

−〈dk, x∗−xk〉 ≤ −Fk+1+η

(
η
L

2
− 1

)
||dk||2+ ||gk −∇f(xk)|| (||x∗ − xk||+ η ||dk||) .
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The final term in (3.13) can be upper bounded as follows:

||gk −∇f(xk)|| (||x∗ − xk||+ η ||dk||)

≤ ηL




k−1∑

j=(k−K)+

||dj ||


 (||x∗ − xk||+ η ||dk||)

≤ ηL




k−1∑

j=(k−K)+

||dj ||





(
η +

2

µ

)
||dk||+ 2ηQ

k−1∑

j=(k−K)+

||dj ||


 ,

where the first line follows by (3.4) and the last line follows by Lemma 3.5. Using the
arithmetic-geometric mean inequality in the above inequality, we obtain

||gk −∇f(xk)|| (||x∗ − xk||+ η ||dk||) ≤ η
KL

2

(
η +

2

µ

)
||dk||

+ η

[
η
L

2
+Q+ 2ηKQL

] k−1∑

j=(k−K)+

||dj || .(3.14)

Putting (3.14) back in (3.13) yields

−〈dk, x∗ − xk〉 ≤ −Fk+1 + η

(
η
L

2
− 1 +

KL

2

(
η +

2

µ

))
||dk||2

+ η

[
η
L

2
+Q+ 2ηKQL

] k−1∑

j=(k−K)+

||dj ||

= −Fk+1 + η

(
η

(K + 1)L

2
− 1 +KQ

)
||dk||2

+ η

[
η
L

2
+Q+ 2ηKQL

] k−1∑

j=(k−K)+

||dj ||

≤ −Fk+1 + η

(
KQ− 1

2

)
||dk||2

+ η

(
η
L

2
+Q+ 2ηKQL

) k−1∑

j=(k−K)+

||dj || ,(3.15)

where the last line follows since η ≤ 1
L(K+1) . Finally, using (3.15) in our original

inequality in (3.10), we obtain

− ||dk||2 ≤ −
µ

2
Fk+1 + η

(
KL

2
− µ

4
+
KL

2

)
||dk||2

+ η

(
η
µL

4
+
L

2
+ ηKL2 +

L

2

) k−1∑

j=(k−K)+

||dj ||2

≤ −µ
2
Fk+1 + ηKL ||dk||2 + ηL

(µ
4

+ ηKL+ 1
) k−1∑

j=(k−K)+

||dj ||2
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≤ −µ
2
Fk+1 + ηKL ||dk||2 + ηL (η(K + 1)L+ 1)

k−1∑

j=(k−K)+

||dj ||2

≤ −µ
2
Fk+1 + ||dk||2 + 2ηL

k−1∑

j=(k−K)+

||dj ||2 ,(3.16)

where the second inequality follows since µ ≥ 0, the third inequality follows since
µ
4 ≤ L, and the last inequality follows since η ≤ 1

L(K+1) . Rearranging the terms in

(3.16), we obtain

(3.17) − ||dk||2 ≤ −
µ

4
Fk+1 + ηL

k−1∑

j=(k−K)+

||dj ||2 ,

which completes the proof of Lemma 3.7.

Before presenting the main result of the paper, we first introduce the follow-
ing lemma, which was presented in [1, Lemma 1] in a slightly different form. This
lemma presents a sufficient condition on the magnitudes of the shocks to the system
(represented by Yk in the lemma) such that these shocks do not disrupt the linear
convergence of the original system αZk+1 ≤ Zk.

Lemma 3.8. Let {Zk} and {Yk} be a sequence of nonnegative real numbers satis-
fying

(3.18) αZk+1 ≤ Zk − β Yk + γ

k∑

j=k−A
Yj

for any k ≥ 0, for some constants α > 1, β ≥ 0, γ ≥ 0 and A ∈ Z+. If

(3.19) γ(αA+1 − 1) ≤ β(α− 1)

holds, then Zk ≤ α−kZ0 for all k ≥ 0.

We next present the main theorem of the paper, which characterizes the linear
convergence rate of the PIAG algorithm. In particular, we show that when the step
size is sufficiently small, the PIAG algorithm is linearly convergent with a factor that
depends on the step size and the strong convexity constant.

Theorem 3.9. Suppose that Assumptions 3.1–3.3 hold. Then, the PIAG algo-
rithm in (2.1) with step size 0 < η ≤ 16

µ [(1 + 1
48Q )

1
K+1 − 1] is linearly convergent

satisfying

(3.20) Fk ≤
(

1 + η
µ

16

)−k
F0

for any k ≥ 0.

Proof. By Lemma 3.7, we have

− 1

4
η ||dk||2 ≤ −η

µ

16
Fk+1 + η2

L

4

k−1∑

j=(k−K)+

||dj ||2 .
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Using this inequality in (3.2) of Lemma 3.4, we get

(3.21)
(

1 + η
µ

16

)
Fk+1 ≤ Fk −

1

4
η ||dk||2 + η2

3L

4

k−1∑

j=(k−K)+

||dj ||2 .

Applying Lemma 3.8 to (3.21) with Zk = Fk and Yk = ||dk||2, we prove (3.20). For
this, we need 0 < η ≤ 1

L(K+1) in order for Lemmas 3.4 and 3.7 to hold, and

(3.22) η2
3L

4

((
1 + η

µ

16

)K+1

− 1

)
≤ 1

4
η
((

1 + η
µ

16

)
− 1
)

with η > 0 for Lemma 3.8 to hold. Simplifying and rearranging terms in (3.22), we
obtain

(
1 + η

µ

16

)K+1

− 1 ≤ 1

48Q
.

Therefore, for any step size satisfying

(3.23) 0 < η ≤ 16

µ

[(
1 +

1

48Q

) 1
K+1

− 1

]
,

Lemma 3.8 holds. We can also observe that the right-hand side of (3.23) can be upper
bounded using the Bernoulli inequality, i.e., (1 + x)r ≤ 1 + rx for any x ≥ −1 and
r ∈ [0, 1], as follows:

η ≤ 16

µ

(
1 +

1

48Q(K + 1)
− 1

)

=
1

3L(K + 1)
.(3.24)

Thus, the constraint (3.23) satisfies the constraint 0 < η ≤ 1
L(K+1) in Lemmas 3.4

and 3.7 as well. Then, applying Lemma 3.8 to (3.21) yields (3.20).

We next introduce the following corollary, which highlights the main result of the
paper. This corollary indicates that for an appropriately chosen step size (which does
not depend on the strong convexity constant µ), the PIAG algorithm is guaranteed
to return an ε-optimal solution after O(QK log(1/ε)) iterations.

Corollary 3.10. Suppose that Assumptions 3.1–3.3 hold. Then, the PIAG al-
gorithm in (2.1) with step size 0 < η ≤ 16

49L(K+1) is linearly convergent satisfying

(3.25) Fk ≤
(

1 + η
µ

16

)−k
F0

for any k ≥ 0. In particular, the PIAG algorithm with step size η = 16
49L(K+1)

is guaranteed to return an ε-optimal solution after at most 50Q(K + 1) log(F0/ε)
iterations.
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Proof. By straightforward algebra, we observe that

(
1 +

1

48Q

) 1
K+1

=

∞∑

i=0

( 1
K+1

i

)(
1

48Q

)i

≥ 1 +
1

48Q(K + 1)
+

1

2(K + 1)

(
1

K + 1
− 1

)(
1

48Q

)2

= 1 +
1

48Q(K + 1)

(
1− 1

96Q

(
1− 1

K + 1

))

≥ 1 +
1

48Q(K + 1)

(
1− 1

96

)

≥ 1 +
1

49Q(K + 1)
.

Therefore, we have

16

µ

[(
1 +

1

48Q

) 1
K+1

− 1

]
≥ 16

µ

[
1 +

1

49Q(K + 1)
− 1

]
=

16

49L(K + 1)
.

Hence, by Theorem 3.9, we conclude that (3.20) holds for any 0 < η ≤ 16
49L(K+1) .

Putting the step size η = 16
49L(K+1) in (3.20), we obtain

Fk ≤
(

1 +
1

49Q(K + 1)

)−k
F0 ≤

(
1− 1

50Q(K + 1)

)k
F0,

where the last inequality follows since Q ≥ 1 and K ≥ 0. Taking logarithms of both
sides yields

log(Fk) ≤ log(F0) + k log

(
1− 1

50Q(K + 1)

)

≤ log(F0)− k

50Q(K + 1)
,

where the last line follows since log(1 + x) ≤ x for any x > −1. Therefore, for any k
satisfying

(3.26) log(F0)− k

50Q(K + 1)
≤ log(ε),

xk is an ε-optimal solution. Rearranging terms in (3.26), we conclude that for any
k ≥ 50Q(K + 1) log(F0/ε), xk is an ε-optimal solution.

In the following corollary, we provide a guarantee on the iterates generated by
the PIAG algorithm, which directly follows by Theorem 3.9 and the strong convexity
of F , i.e., F (xk)− F (x∗) ≥ µ

2 ||xk − x∗||
2
.

Corollary 3.11. Suppose that Assumptions 3.1–3.3 hold. Then, the iterates
generated by the PIAG algorithm with step size 0 < η ≤ 16

µ [(1 + 1
48Q )

1
K+1 − 1] satisfy

the following guarantee:

(3.27) ||xk − x∗||2 ≤
(

1 + η
µ

16

)−k 2F0

µ

for any k ≥ 0.
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Fig. 4.1. Red dots show the empirical performance of the PIAG algorithm for various m, L,
µ, and n under the worst-case initialization. Blue lines have slope − log(1 + 2ηµ).
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Fig. 4.2. Number of iterations required for the PIAG algorithm to decrease the function sub-
optimality by e−1 versus Q (left figure), m (middle figure), and Qm (right figure).

4. Numerical examples. In this section, we investigate the tightness of our
bounds via numerical examples and compare the performance of the PIAG algorithm
with the state-of-the-art methods in the literature. First, we construct an example
and vary the parameters (n, m, L, and µ) of this example to illustrate that our upper
bounds are tight up to constants. Then, we present how the iteration complexity
of PIAG changes with the condition number of the problem Q and the number of
component functions m. In our experiments, we let r = 0, fi = f for all i ∈ {1, . . . ,m}
and define f(x) = 1

2x
TAx, where A = diag(a1, . . . , an), where a1 = µ, a2 = L, and

{ai}i>2 are chosen independently and uniformly at random from the interval [µ,L].
We initialize the PIAG algorithm with x0 = [1, 0, . . . , 0]T in order to show the worst-
case rates. We apply the PIAG algorithm to this problem with the maximum allowable
step size in Theorem 3.9.

In Figure 4.1, we plot the empirical performance of PIAG applied to the described
problem for various values of n, m, L, and µ. The red dots in figures show the empirical
performance of PIAG, whereas blue lines have slope − log(1 + 2ηµ) (see color figures
in the online version). From Figure 4.1, we observe that even though the condition
number of the problem Q and the number of component functions m change, the
convergence rate of the PIAG algorithm stays around − log(1 + 2ηµ). This verifies
that the contraction factor in Theorem 3.9 is tight up to constants.
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Fig. 4.3. Convergence rate plots for the training loss on benchmark datasets.

We next illustrate (in Figure 4.2) how the number of iterations required to de-
crease the function suboptimality by a factor of e−1 changes as Q and m increase.
In the left figure, we set n = 2, m = 100, µ = 1 and vary L ∈ [10, 105], whereas in
the middle figure, we set n = 2, L = 100, µ = 1 and vary m ∈ [10, 105]. As can be
seen from the figures, the number of iterations to achieve the same suboptimality in
function values increases linearly with Q and m. Finally, in the right figure, we set
n = 2, µ = 1 and vary m = L ∈ [10, 104]. The x-axis in this figure is set to log(m)
(or equivalently log(Q) since L = m and µ = 1). Corollary 3.10 implies that the
iteration complexity of PIAG for this problem is O(Qm log(1/e−1)) = O(m2) and as
we observe in the right figure, the logarithm of the number of iterations (to decrease
function suboptimality by e−1) grows as 2 log(m), which verifies Corollary 3.10.

Finally, we apply the PIAG algorithm to several datasets. We compare the PIAG
algorithm with the incrementally updated gradient (IUG) algorithm of [39] and the
SAGA [9], Finito [10], and SVRG [20] algorithms. For all algorithms, we use step
sizes that yields the fastest convergence rate. At each iteration, all algorithms make
a single call to the gradient oracle. For the PIAG and IUG algorithms, the order of
the data is reshuffled between each epoch, and hence we have K = 2m−1. In SAGA,
SVRG and Finito, the data is chosen uniformly at random as stated in their algorithm
descriptions.

We performed L2-regularized logistic regression on the covtype and ijcnn1 data-
sets3 (for binary classification), with regularization parameters 10−4 and 10−3, re-
spectively. Then, we considered the LASSO problem on the million song year and

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
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1298 N. D. VANLI, M. GÜRBÜZBALABAN, AND A. OZDAGLAR

slice-localization datasets4, with L1-regularization parameters 10−2 and 10−3, respec-
tively. Figure 4.3 shows the results of our experiments. We can observe that when
the regularization parameter λ is small, the performances of the PIAG and IUG algo-
rithms are similar, whereas there is a distinct difference between them as λ increases.
This follows due to the difference in the scaling of the step lengths with respect to λ
in the proximal mapping of these two algorithms. For the regression problems with
relatively large strong convexity constant and/or large number of data points (i.e.,
when the big data condition holds [10], which is the regime under which the conver-
gence rate results for FInito hold), we observe that the convergence rate of Finito is
faster with respect to the other algorithms. Overall, we can conclude that the per-
formance of the PIAG algorithm is competitive with respect to the state-of-the-art
algorithms and the rates of convergence of these algorithms are usually comparable
to one another.

5. Concluding remarks. In this paper, we studied the PIAG method for ad-
ditive composite optimization problems of the form (1.1). We showed the first linear
convergence rate result for the PIAG method and provided explicit convergence rate
estimates that highlight the dependence on the condition number of the problem and
the size of the window K over which outdated component gradients are evaluated
(under the assumptions that f(x) is strongly convex and each fi(x) is smooth with
Lipschitz gradient). Our results hold for any deterministic order (in processing the
component functions) in contrast to the existing work on stochastic variants of our
algorithm, which presents convergence results in expectation.

Appendix A. Proof of Lemma 3.8. Multiplying both sides of (3.18) by αk

and summing from k = 0 to p, we get

p∑

k=0

αk+1Zk+1 ≤
p∑

k=0


αkZk − αkβ Yk + αkγ

k∑

j=k−A
Yj




=

p∑

k=0

αkZk − β
p∑

k=0

αk Yk + γ

p∑

k=0

k∑

j=k−A
αk Yj

≤
p∑

k=0

αkZk − β
p∑

k=0

αk Yk + γ

p∑

k=0



k+A∑

j=k

αj


Yk

=

p∑

k=0

αkZk − β
p∑

k=0

αk Yk + γ

p∑

k=0

(
αk
αA+1 − 1

α− 1

)
Yk

=

K∑

k=0

αkZk −
K∑

k=0

αk
(
β − γ α

A+1 − 1

α− 1

)
Yk

≤
p∑

k=0

αkZk,(A.1)

where the last line follows by (3.19). Telescoping the terms in both sides, we get
αp+1Zp+1 ≤ Z0.

4https://archive.ics.uci.edu/ml/datasets.html
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