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Abstract. The H∞ norm of a transfer matrix function for a control system is the reciprocal of
the largest value of ε such that the associated ε-spectral value set is contained in the stability region
for the dynamical system (the left half-plane in the continuous-time case and the unit disk in the
discrete-time case). After deriving some fundamental properties of spectral value sets, particularly
the intricate relationship between the singular vectors of the transfer matrix and the eigenvectors of
the corresponding perturbed system matrix, we extend an algorithm recently introduced by Guglielmi
and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166–1192] for approximating the maximal
real part or modulus of points in a matrix pseudospectrum to spectral value sets, characterizing its
fixed points. We then introduce a Newton-bisection method to approximate the H∞ norm, for
which each step requires optimization of the real part or the modulus over an ε-spectral value set.
Although the algorithm is guaranteed only to find lower bounds on the H∞ norm, it typically finds
good approximations in cases where we can test this. It is much faster than the standard Boyd–
Balakrishnan–Bruinsma–Steinbuch algorithm to compute the H∞ norm when the system matrices
are large and sparse and the number of inputs and outputs is small. The main work required by the
algorithm is the computation of the spectral abscissa or radius of a sequence of matrices that are
rank-one perturbations of a sparse matrix.

Key words. H∞ norm, large and sparse systems, spectral value sets, spectral value set abscissa,
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1. Introduction. Consider the continuous-time linear dynamical system with
input and output defined by

ẋ(t) = Ax(t) +Bu(t),(1.1)

y(t) = Cx(t) +Du(t),

where A ∈ Cn,n, B ∈ Cn,p, C ∈ Cm,n, and D ∈ Cm,p. The discrete time analogue is

xk+1 = Axk +Buk,(1.2)

yk = Cxk +Duk.

In this paper we present new methods for computing the H∞ norm of the transfer
matrix function associated with these systems, a well-known important quantity for
measuring robust stability [17, 31]. We build on two foundations. The first is the
theory of spectral value sets presented in [17], as the H∞ norm can be viewed as
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710 N. GUGLIELMI, M. GÜRBÜZBALABAN, AND M. L. OVERTON

the reciprocal of the largest value of ε such that the associated ε-spectral value set
is contained in the stability region for the dynamical system (the left half-plane in
the continuous-time case and the unit disk in the discrete-time case). The second
is an algorithm recently introduced by Guglielmi and Overton [14] for computing
the rightmost point (or the largest point in modulus) in the ε-pseudospectrum of a
matrix A. We extend this algorithm from pseudospectra to spectral value sets and
then give a Newton-bisection method to approximate the H∞ norm. Although the
algorithm is guaranteed only to find lower bounds on the H∞ norm, it typically finds
good approximations in cases where we can test this. The algorithm is much faster
than the standard Boyd–Balakrishnan–Bruinsma–Steinbuch (BBBS) algorithm [4, 5]
to compute the H∞ norm when n� max(m, p) and the matrix A is sparse.

The paper is organized as follows. In the next section we establish the fundamen-
tal properties of spectral value sets that we will need, including a detailed explanation
of the relationship between the singular vectors of the transfer matrix and the eigen-
vectors of a corresponding perturbed system matrix. We then define the H∞ norm
and explain its relationship with spectral value sets. In section 3 we generalize the
algorithm of [14] for computing the pseudospectral abscissa of a matrix A to a spectral
value set abscissa for (A,B,C,D). We briefly discuss local convergence properties of
this method, including the characterization of fixed points of the iteration, and we
give a variation for the spectral value set radius. Then in section 4 we introduce a
Newton-bisection method to approximate the H∞ norm. Every step of this method
requires the approximation of a spectral value set abscissa (or radius) and each of these
is carried out by an iteration which requires only the computation of the rightmost
eigenvalue (or eigenvalue with largest modulus) of a sequence of matrices that are
rank-one perturbations of A. In sections 5.1 and 5.2 we present numerical examples,
and in section 6 we discuss some open questions for future research.

2. Spectral value sets. The first part of this section follows the development in
[17, section 5.1]; more detailed attribution appears below. Given A,B,C,D defining
the linear dynamical system (1.1), consider the perturbed system matrix

(2.1) M(E) = A+BE(I −DE)−1C for E ∈ C
p×m

assuming I −DE is invertible and the associated transfer matrix

G(λ) = C(λI −A)−1B +D for λ ∈ C\σ(A),

where σ(·) denotes spectrum. The following fundamental theorem relates the norm
of the transfer matrix evaluated at eigenvalues of the perturbed system matrices to
the norms of the underlying perturbations E. Here and throughout the paper, ‖ · ‖
denotes the vector or matrix 2-norm (maximum singular value). The dimension of
the identity matrix I depends on the context.

Theorem 2.1. Let ε ∈ R with ε > 0 and ε‖D‖ < 1 so that I −DE is invertible
when ‖E‖ ≤ ε. Then for λ �∈ σ(A) the following are equivalent:

(2.2) ‖G(λ)‖ ≥ ε−1 and λ ∈ σ(M(E)) for some E with ‖E‖ ≤ ε.

Proof. Suppose the first statement holds with ξ = ‖G(λ)‖−1 ≤ ε. Let u and v
respectively be right and left singular vectors of G(λ) corresponding to the largest
singular value ξ−1, so that ξG(λ)u = v, ξv∗G(λ) = u∗, and ‖u‖ = ‖v‖ = 1. Set
E = ξuv∗ so that ‖E‖ = ξ ≤ ε. We have G(λ)E = vv∗, so

(2.3) (C(λI −A)−1B +D)Ev = v.
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Define Y = (I −DE)−1C and Z = (λI − A)−1BE, so we have Y Zv = v. It follows
that ZY x = x with x = Zv �= 0 an eigenvector of ZY . Multiplying through by λI−A,
we have

(2.4) BE(I −DE)−1Cx = (λI −A)x,

proving the second statement in (2.2).
Conversely, suppose that the second statement holds. Then ∃x �= 0 such that

(2.4) holds. We have ZY x = x, so x is an eigenvector of ZY corresponding to the
eigenvalue 1. Consequently, Y Zw = w where w = Y x �= 0 is an eigenvector of Y Z.
Multiplying by I −DE and rearranging we have

(C(λI −A)−1B +D)Ew = w

so

ε‖G(λ)‖ ≥ ‖G(λ)E‖ ≥ 1,

establishing the first statement in (2.2).
Remark 2.2. Equivalence (2.2) also holds if we restrict E in the second statement

to have rank one. The proof remains unchanged. Note that u and v are each uniquely
defined up to a unimodular scalar if and only if the maximum singular value ξ−1 is
simple.

Definition 2.3. Let ε ∈ R with ε ≥ 0 and ε‖D‖ < 1, and define the spectral
value set

σε(A,B,C,D) =
⋃{

σ(M(E)) : E ∈ C
p×m, ‖E‖ ≤ ε

}
.

Note that σε(A,B,C,D) ⊃ σ0(A,B,C,D) = σ(A). The following corollary of
Theorem 2.1 and Remark 2.2 is immediate.

Corollary 2.4. Let ε ∈ R with ε > 0 and ε‖D‖ < 1. Then

σε(A,B,C,D)\σ(A) =
⋃{

λ ∈ C\σ(A) : ‖G(λ)‖ ≥ ε−1
}

=
⋃{

σ(M(E)) : E ∈ C
p×m, ‖E‖ ≤ ε, rank(E) = 1

}
.

Remark 2.5. Theorem 2.1 is implied by the more general development in [17,
Theorem 5.2.9], where the norm need not be the 2-norm and the admissible pertur-
bations E may be restricted to have a specified structure; see also [20] for the case
D = 0. The basic idea of our proof is from [17, Lemma 5.2.7], but the relationship
between eigenvectors ofM(E) and singular vectors of G(λ) revealed by our proof and
developed further below is essential for this paper. Remark 2.2 may also be found
in [17, Remark 5.2.20(iii)]; this observation does not generally apply when structure
is imposed on E. The sets σε are called spectral value sets in [17, 20] and are also
sometimes known as structured pseudospectra. In the case B = C = I,D = 0, the
σε are called pseudospectra [27]. In all the references just mentioned, the sets are
defined with strict inequalities instead of the nonstrict inequalities used above. Using
our definition, the set σε is compact for fixed ε.

Definition 2.6. An eigenvalue λ of A is observable if all its corresponding right
eigenvectors x (with Ax = λx, x �= 0) satisfy Cx �= 0, and it is controllable if all
its corresponding left eigenvectors y (with y∗A = λy∗, y �= 0) satisfy y∗B �= 0 [2,
Corollary 6.9].
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712 N. GUGLIELMI, M. GÜRBÜZBALABAN, AND M. L. OVERTON

Remark 2.7. If an eigenvalue λ of A is either unobservable or uncontrollable,
that is, Cx = 0 or y∗B = 0 for some right eigenvector x or left eigenvector y, then
from (2.1) we have either M(E)x = λx or y∗M(E) = λy∗ for all E for which M(E) is
defined. Therefore, λ is an eigenvalue of M(E) for all such E, so λ ∈ σε(A,B,C,D)
for all ε with ε‖D‖ < 1. If in addition λ is a simple eigenvalue of A, then by eigenvalue
continuity, λ must be an isolated point of σε(A,B,C,D) for all sufficiently small ε.

Next, we show that as long as E is chosen to have rank one, E(I −DE)−1 can
be simplified.

Lemma 2.8. Let ε ∈ R, with ε > 0 and ε‖D‖ < 1. Then for all E with ‖E‖ ≤ ε,
we have E(I −DE)−1 = (I − ED)−1E, and if E = εuv∗, where u ∈ Cp and v ∈ Cm

are arbitrary vectors with unit norm, we have

E(I −DE)−1 =
1

1− εv∗DuE.

Proof. To see that the first statement holds, multiply both sides on the left by
I − ED and on the right by I − DE. For the second, by the Sherman–Morrison–
Woodbury formula [13], we have

E(I −DE)−1 = εuv∗(I − εDuv∗)−1 = εuv∗
(
I +

ε

1− εv∗DuDuv
∗
)

= εuv∗ +
ε2v∗Du

1− εv∗Duuv
∗ =

1

1− εv∗DuE.

We now show that again provided E is rank-one, there is a key relationship
between the right and left eigenvectors ofM(E) and the right and left singular vectors
of G(λ).

Theorem 2.9. Let ε ∈ R with ε > 0 and ε‖D‖ < 1, and suppose that u ∈ Cp

and v ∈ Cm with ‖u‖ = ‖v‖ = 1 satisfy

(2.5) εG(λ)u = v and εv∗G(λ) = u∗,

i.e., that u and v are respectively right and left singular vectors of G(λ) corresponding
to a singular value ε−1. Then, defining E = εuv∗, we have

(2.6) M(E)x = λx and y∗M(E) = λy∗

with

(2.7) x = ε(λI −A)−1Bu and y = ε(λI −A)−∗C∗v

both nonzero, so that x and y are respectively right and left eigenvectors of M(E)
corresponding to the eigenvalue λ. Furthermore,

(2.8) Cx+ εDu = v and B∗y + εD∗v = u

and

u =
(
I − ε2D∗D

)−1
(B∗y + εD∗Cx) ,(2.9)

v =
(
I − ε2DD∗)−1

(Cx+ εDB∗y) .(2.10)

Conversely, suppose E = εuv∗ for some u ∈ C
p and v ∈ C

m with ‖u‖ = ‖v‖ = 1 and
that (2.6) holds with x and y nonzero. Then we can scale x and y so that

(2.11) v∗Cx+ εv∗Du = 1 and u∗B∗y + εu∗D∗v = 1
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and so that (2.7) also holds, and if we assume further that (2.8) holds, it follows that
(2.5) holds.

Proof. Suppose that (2.5) holds, so G(λ)E = vv∗ and hence (2.3) holds. Defining
Y = (I − DE)−1C and Z = (λI − A)−1BE as in the proof of the first part of
Theorem 2.1 and using the same argument given there, we have (2.4) with x = Zv �= 0,
proving the first statement in (2.6). Hence

x = Zv = (λI −A)−1BEv = ε(λI −A)−1Bu

giving the first part of (2.7). Furthermore, we have EG(λ) = uu∗, so

u∗E(C(λI −A)−1B +D) = u∗.

Defining Z̃ = EC(λI − A)−1 and Ỹ = B(I − ED)−1, we have u∗Z̃Ỹ = u∗, so u is a

left eigenvector of Z̃Ỹ . Hence y∗Ỹ Z̃ = y∗ with y = Z̃∗u �= 0 a left eigenvector of Ỹ Z̃.
Multiplying through by (λI −A) on the right, we find

(2.12) y∗B(I − ED)−1EC = y∗(λI −A)

with

y = Z̃∗u = (λI −A)−∗C∗E∗u = ε(λI −A)−∗C∗v

so y is a left eigenvector of A + B(I − ED)−1EC and hence by Lemma 2.8 a left
eigenvector of M(E). This proves the second statement in (2.6) and the second part
of (2.7). Also, (2.7) implies that

Cx = εC(λI −A)−1Bu and B∗y = εB∗(λI −A)−∗C∗v

and combining this with (2.5) we obtain (2.8). Solving (2.8) for u and v gives (2.9)
and (2.10), which are well defined as ε‖D‖ < 1. Note that the right-hand sides of
(2.9) and (2.10) must have unit norm as we assumed a priori that u and v have unit
norm.

Conversely, given (2.6), it follows that (2.4) holds, and hence using Lemma 2.8
we have

x = ψ(v∗Cx)(λI −A)−1Bu with ψ =
ε

1− εv∗Du,

giving the first parts of (2.11) and (2.7) by scaling x so that ψv∗Cx = ε. Similarly,
we have (2.12), which implies

y = ψ̄(u∗B∗y)(λI −A)−∗C∗v,

giving the second parts of (2.11) and (2.7) by scaling y so that ψ̄u∗B∗y = ε. Note that
scaling x and y does not change the norms of u and v which are one by assumption.
It follows from (2.7) that

Cx + εDu = εG(λ)u and B∗y + εD∗v = εG(λ)∗v.

So, if u and v satisfy (2.8), then (2.5) must hold.
Remark 2.10. Theorem 2.9 generalizes the far more trivial Lemma 1.1 of [14].

In the case D = 0, (2.8), (2.9), and (2.10) simplify considerably to u = B∗y, v = Cx,
and if we also assume B = C = I, then they simplify to u = y and v = x. It may be
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helpful to consider the converse result in this case. If we take E = εuv∗ and assume
that the eigenvector equations (2.6) hold, then we can scale x, y so that v∗x = 1,
u∗y = 1, and (2.7) holds, that is, x = ε(λI−A)−1u, y = ε(λI−A)−∗v (the proof is as
given, with obvious simplifications). However, only if we further assume that x = v
and y = u can we conclude that the singular vector equations (2.5) hold.

Remark 2.11. If either Cx = 0 or y∗B = 0, the normalization (2.11) is not
possible, given the assumption ε‖D‖ < 1, and consequently neither the assumptions
of the theorem nor its converse can hold.

2.1. The H∞ norm for continuous-time systems. We start by defining
spectral abscissa and spectral value set abscissa.

Definition 2.12. The spectral abscissa of the matrix A is

α(A) = max{Re λ : λ ∈ σ(A)}

with A (Hurwitz) stable if α(A) < 0. For ε ≥ 0, ε‖D‖ < 1, the spectral value set
abscissa is

(2.13) αε(A,B,C,D) = max{Re λ : λ ∈ σε(A,B,C,D)}

with α0(A,B,C,D) = α(A).
Definition 2.13. A rightmost point of a set S ⊂ C is a point where the maximal

value of the real part of the points in S is attained.
Remark 2.14. Since σε(A,B,C,D) is compact, its rightmost points, that is, the

maximizers of the optimization problem in (2.13), lie on its boundary. There can
be only a finite number of these; otherwise, the boundary would need to contain
an infinite number of points with the same real part, which can be ruled out by an
argument similar to [14, Lemma 2.5], exploiting [17, Lemma 5.3.30].

We now define the H∞ norm.
Definition 2.15. The H∞ norm of the transfer matrix function G for continuous-

time systems is

(2.14) ‖G‖c∞ = sup
δ>‖D‖

{
δ : δ = ε−1 and αε(A,B,C,D) ≥ 0

}
.

Remark 2.16. The reciprocal of the H∞ norm, which can be characterized as
the largest ε such that σε(A,B,C,D) is contained in the left half-plane, is called the
complex stability radius [17, section 5.3] (complex because complex perturbations are
admitted even if the data are real, and radius in the sense of the perturbation space,
not the complex plane). When B = C = I and D = 0 this is also known as the
distance to instability [29] for the matrix A.

The following lemma states an equivalent definition of the H∞ norm which is
actually the standard one.

Lemma 2.17.

(2.15) ‖G‖c∞ =

{
∞ if α(A) ≥ 0,
supω∈R ‖G(iω)‖ otherwise.

Proof. Clearly, the supremum in (2.14) is bounded if and only if A is stable.
For stable A and sufficiently small ε, rightmost points of the spectral value set are
in the open left half-plane. If σε(A,B,C,D) does not intersect the imaginary axis
for any ε > 0 with ε‖D‖ < 1, then we take the supremum in (2.14) to be ‖D‖ as
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no δ > ‖D‖ satisfies the conditions, while by Corollary (2.4), ‖G(iω)‖ < ε−1 for all
ω ∈ R and all ε with ε‖D‖ < 1, and hence the supremum in (2.15) is at most ‖D‖
(and therefore equal to ‖D‖ as seen by letting ω → ±∞). Otherwise, there must exist
a smallest ε̃ for which a rightmost point λ̃ in σε̃(A,B,C,D) is on the imaginary axis,
and by choosing E to have rank one as explained in Remark 2.2 we have ‖E‖ = ε̃ and
‖G(λ̃)‖ = ε̃−1. Furthermore, supposing that there is another point on the imaginary
axis with a norm larger than ε̃ leads immediately to a contradiction.

The standard method for computing the H∞ norm is the BBBS algorithm [4, 5],
which generalizes and improves an algorithm of Byers [9] for computing the distance
to instability for A. The method relies on Lemma 2.17: for stable A, it needs only to
maximize ‖G(iω)‖ for ω ∈ R. The key idea is that given any δ > 0, it is possible to
determine whether ω ∈ R exists such that ‖G(iω)‖ = δ by computing all eigenvalues of
an associated 2n×2nHamiltonian matrix and determining whether any are imaginary.
The algorithm is quadratically convergent, but the computation of the eigenvalues
and the evaluation of the norm of the transfer matrix both require on the order of n3

operations, which is not practical when n is sufficiently large.

Our new algorithm is not based on evaluating the norm of the transfer matrix.
Instead, it works directly with spectral value sets. The first step is to generalize
the algorithm of [14] for approximating the pseudospectral abscissa of a matrix to
the more general setting of the spectral value set abscissa αε(A,B,C,D) defined
in (2.13), as explained in the next section. For this we will need the following
concept.

Definition 2.18. A locally rightmost point of a set S ⊂ C is a point λ which is
a rightmost point of S ∩ N for some neighborhood N of λ.

In order to analyze conditions for a point to be a locally rightmost one, we need
to make a basic assumption.

Assumption 2.19. Let ε ∈ R with ε > 0 and ε‖D‖ < 1, and let λ �∈ σ(A) be a
locally rightmost point of σε(A,B,C,D). Then

1. the largest singular value ε−1 of G(λ) is simple,
2. letting u and v be corresponding right and left singular vectors and setting
E = εuv∗, the eigenvalue λ of M(E) is simple. (That λ is an eigenvalue of
M(E) follows from Theorem 2.9.)

We shall assume throughout the paper that Assumption 2.19 holds.

Remark 2.20. Some comments on the assumption are in order. It can be shown
by similar arguments to those used in [6, section 2] that generically, that is, for
almost all quadruples (A,B,C,D), the largest singular value of G(λ) is simple for all
λ ∈ C\σ(A). However, examples for which the first part of the assumption does not
hold can be constructed easily: take A = diag(−2,−1), B = diag(2, 1), C = I, D = 0,
and ε = 1, for which the rightmost point of σε(A) is λ = 0 and G(λ) = I [28]. If
the first part does not hold, then u and v are not uniquely defined and so the second
part of the assumption is not well defined. In the special case B = C = I, D = 0,
as pointed out in [14], it is clear that if A has simple eigenvalues and ε is sufficiently
small, the first part of the assumption must hold, and it seems to be an open question
as to whether this is true for all ε. Furthermore, as stated in [14, Lemma 2.6], when
B = C = I, D = 0, the second part of the assumption is implied by the first, but this
observation relies on a nontrivial result from [1] that may not carry over to the general
case. Finally, again in the case B = C = I, D = 0, it is also known that regardless of
the multiplicity of the largest singular value of G(λ), all pairs of corresponding right
and left singular vectors u and v satisfy u∗v �= 0 [15].
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Although we do not use the transfer matrix G(λ) as a computational tool, we
use it to characterize maxima of the optimization problem on the right-hand side of
(2.13). First, note that it follows from Corollary 2.4 that for ε > 0, ε‖D‖ < 1, the
definition of the spectral value set abscissa in (2.13) is equivalent to

(2.16) αε(A,B,C,D) = max
{
Re λ : λ ∈ σ(A) or ‖G(λ)‖ ≥ ε−1

}
.

The set of admissible λ must include σ(A) because of the possibility that the spectral
value set σε(A,B,C,D) has isolated points. Excluding such points, we obtain local
optimality conditions for (2.16) as follows.

Lemma 2.21. Under Assumption 2.19, a necessary condition for λ �∈ σ(A) to be
a local maximizer of the optimization problem in (2.16) is

(2.17) ‖G(λ)‖ = ε−1 and v∗C (λI −A)−2
Bu ∈ R

++,

where R++ denotes the positive real numbers and u and v are respectively right and
left singular vectors corresponding to the largest singular value ε−1 of G(λ).

Proof. We have already observed that by compactness of σε(A,B,C,D), maxi-
mizers must lie on the boundary, and hence the first statement in (2.17) holds. The

standard first-order necessary condition for ζ̂ ∈ R
2 to be a local maximizer of an

optimization problem max{f(ζ) : g(ζ) ≤ 0, ζ ∈ R2}, when f , g are continuously

differentiable and g(ζ̂) = 0, ∇g(ζ̂) �= 0, is the existence of a Lagrange multiplier μ ≥ 0

such that ∇f(ζ̂) = μ∇g(ζ̂). In our case, identifying λ ∈ C with ζ ∈ R2, the gradient
of the maximization objective is [1, 0]T , while the constraint

1

ε
− ‖C (λI − A)−1

B +D‖

is differentiable with respect to λ because of the first part of Assumption 2.19, and it
has gradient [

Re(v∗C(λI −A)−2Bu)
Im(v∗C(λI −A)−2Bu)

]
using standard perturbation theory for singular values [14, Lemma 2.3]. Defining
E = εuv∗ and applying Theorem 2.9 we know that x and y as defined in (2.7) are
respectively right and left eigenvectors of M(E) with inner product

(2.18) y∗x = ε2v∗C(λI −A)−2Bu.

By the second part of Assumption 2.19, λ is a simple eigenvalue of M(E) and so
y∗x �= 0. Therefore, the constraint gradient is nonzero, implying that the Lagrange
multiplier μ ≥ 0 exists with v∗C(λI −A)−2Bu = 1/μ ∈ R++.

Corollary 2.22. Let λ �∈ σ(A) be a local maximizer of the optimization problem
in (2.13) and let u, v be respectively right and left singular vectors of G(λ) correspond-
ing to the largest singular value ε−1. Let E = εuv∗. Define x and y to be eigenvectors
of M(E) corresponding to the eigenvalue λ and scaled as in (2.7). Then, under As-
sumption 2.19, y∗x must be real and positive.

Proof. Since the optimization problems in (2.13) and (2.16) are equivalent, the
result follows directly from Lemma 2.21 using (2.18).

For this reason the following definition is very useful.
Definition 2.23. A pair of complex vectors x and y is called RP-compatible if

‖x‖ = ‖y‖ = 1 and y∗x ∈ R++ and therefore in the interval (0, 1].
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2.2. The H∞ norm for discrete-time systems. We have analogous defini-
tions relevant to discrete-time systems.

Definition 2.24. The spectral radius of the matrix A is

ρ(A) = max{|λ| : λ ∈ σ(A)}

with A (Schur) stable if ρ(A) < 1. For ε ≥ 0, the spectral value set radius is

(2.19) ρε(A,B,C,D) = max{|λ| : λ ∈ σε(A,B,C,D)}.

Definition 2.25. An outermost point of a set S ⊂ C is a point where the
maximal value of the modulus of the points in S is attained.

Definition 2.26. The H∞ norm of the transfer matrix function G for discrete-
time systems is

(2.20) ‖G‖d∞ = sup
δ>‖D‖

{
δ : δ = ε−1 and ρε(A,B,C,D) ≥ 1

}
.

The more standard equivalent definition of the H∞ norm is given by the following
lemma.

Lemma 2.27.

(2.21) ‖G‖d∞ =

{
∞ if ρ(A) ≥ 1,
supθ∈R ‖G(eiθ)‖ otherwise.

We omit the proof.
There is a variant of the BBBS algorithm for computing the discrete-time H∞

norm, based on computing eigenvalues of symplectic pencils instead of Hamiltonian
matrices [18, 12].

Definition 2.28. A locally outermost point of a set S ⊂ C is a point λ which
is an outermost point of S ∩ N for some neighborhood N of λ.

From Corollary 2.4, for ε > 0, the definition of the spectral value set radius in
(2.19) is equivalent to

(2.22) ρε(A,B,C,D) = max
{
|λ| : λ ∈ σ(A) or ‖G(λ)‖ ≥ ε−1

}
.

Excluding possibly isolated points in σ(A), we obtain local optimality conditions for
(2.22) as follows.

Lemma 2.29. Extending Assumption 2.19 to locally outermost points in addition
to locally rightmost points, a necessary condition for λ �∈ σ(A) to be a local maximizer
of the optimization problem in (2.22) is

(2.23) ‖G(λ)‖ = ε−1 and λ
(
v∗C (λI −A)−2Bu

)
∈ R

++,

where u and v are respectively right and left singular vectors corresponding to the
largest singular value ε−1 of G(λ).

The proof is the same as the proof of Lemma 2.21, except that the derivative of
the complex modulus replaces the derivative of the real part.

So, we generalize the definition of RP-compatibility as follows.
Definition 2.30. A pair of complex vectors x and y is called RP(λ)-compatible

if ‖x‖ = ‖y‖ = 1 and y∗x is a positive real multiple of λ. When the argument λ is
omitted, it is understood to be 1.
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3. Approximating the spectral value set abscissa and radius. We now
show how to generalize the algorithm of [14] to approximate the spectral value set
abscissa αε(A,B,C,D). We address the spectral value set radius ρε(A,B,C,D) in
section 3.6 below. We write approximate, not compute, because the algorithm aims
to find local maximizers of the optimization problem in (2.13). There will be no
assurance that these are global maximizers, but in practice this is often the case, and
even if it is not, we obtain guaranteed lower bounds on αε. We remark that we could
easily extend the criss-cross algorithm of [6] to compute the global optimum, but, like
the BBBS algorithm, this would require repeated computation of all the eigenvalues
of a 2n× 2n Hamiltonian matrix.

We have seen from Theorem 2.1 and Remark 2.2 that without loss of generality,
we can restrict the perturbation matrix E ∈ Cp×m parameterizing σε(A,B,C,D)
to have rank one. The idea of the algorithm is to generate a sequence of rank-one
perturbations with norm ε, say, εukv

∗
k, k = 0, 1, 2, . . ., with uk ∈ Cp, vk ∈ Cm, and

‖uk‖ = ‖vk‖ = 1. The goal is to choose the sequence so that M(εukv
∗
k) converges

to a matrix M(E) with an eigenvalue that is a rightmost point of σε(A,B,C,D).
Assuming max(m, p) � n, the primary matrix operation needed by the algorithm is
the computation of eigenvalues with largest real part and their corresponding right
and left eigenvectors, which can be done efficiently using an iterative method assuming
A is sparse.

We know from Lemma 2.8 that

M(εukv
∗
k) = A+BFkC, where Fk =

εukv
∗
k

1− εv∗kDuk
.

The first step of the algorithm is to compute the rightmost eigenvalue λ0 of A and
corresponding RP-compatible right and left eigenvectors x0, y0. Assume that λ0 is
simple, controllable, and observable, and consider the matrix-valued function

K(t) = A+ tBF0C = A+ tB
εu0v

∗
0

1− εv∗0Du0
C,

where u0 and v0 are to be determined. Let λ(t) denote the eigenvalue of K(t) con-
verging to λ0 as t→ 0. Using standard eigenvalue perturbation theory [19, Theorem
6.3.12], [14, Lemma 2.1], we have

(3.1) λ′(0) :=
dλ(t)

dt

∣∣∣∣
t=0

=
y∗0B

(
u0v

∗
0

1−εv∗
0Du0

)
Cx0

y∗0x0
.

We choose (u0, v0) to maximize the real part of this expression, as this choice is the
one that moves λ(t) to the right as fast as possible as t is increased from zero. Since
x0, y0 are RP-compatible, their inner product y∗0x0 is a fixed positive real number.
Therefore, we choose u0 and v0 as maximizers of

(3.2) max
u∈C

p,‖u‖=1
v∈C

m,‖v‖=1

Re

(
y∗0B

(
uv∗

1− εv∗Du

)
Cx0

)
.

When D = 0, we obtain u0 = B∗y0/‖B∗y0‖ and v0 = Cx0/‖Cx0‖. We will discuss
the case D �= 0 in detail below.

Now, let us consider how to compute (uk, vk) from (uk−1, vk−1) for k = 1, 2, . . ..
The algorithm computes the rightmost eigenvalue λk ofM(εuk−1v

∗
k−1) = A+BFk−1C
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and corresponding RP-compatible right and left eigenvectors xk, yk. Assume that λk
is simple, controllable, and observable and consider the matrix-valued linear function

K(t) = A+BFk−1C + tB (Fk − Fk−1)C

with t ∈ R, which satisfies K(0) =M(εuk−1v
∗
k−1) and K(1) =M(εukv

∗
k). Define λ(t)

to be the eigenvalue of K(t) that converges to λk as t → 0. Again using standard
first-order eigenvalue perturbation theory we have

λ′(0) :=
dλ(t)

dt

∣∣∣∣
t=0

=
y∗kB (Fk − Fk−1)Cxk−1

y∗k−1xk−1
(3.3)

= ε
y∗kB

(
ukv

∗
k

1−εv∗
kDuk

)
Cxk

y∗kxk
− ε

y∗kB
(

uk−1v
∗
k−1

1−εv∗
k−1Duk−1

)
Cxk

y∗kxk
.(3.4)

The second term is fixed so we choose uk, vk to maximize the real part of the first
term; clearly, the real part of the second term is a lower bound. Since xk, yk are
RP-compatible, their inner product y∗kxk is a fixed positive real number. Therefore,
we choose uk and vk as maximizers of

(3.5) max
u∈C

p,‖u‖=1
v∈C

m,‖v‖=1

Re

(
y∗kB

(
uv∗

1− εv∗Du

)
Cxk

)
,

an optimization problem with the same form as (3.2). When D = 0, we obtain
uk = B∗yk/‖B∗yk‖ and vk = Cxk/‖Cxk‖.

3.1. Solving the optimization subproblem when D �= 0. We address here
the following unconstrained optimization problem:

(3.6) max
u∈C

p,‖u‖=1
v∈C

m,‖v‖=1

Re g(u, v)

with

g(u, v) =
g1(u, v)

g2(u, v)
, g1(u, v) = b∗uv∗c, g2(u, v) = 1− εv∗Du,

which is equivalent to (3.2) when b = B∗y0 and c = Cx0 and to (3.5) when b = B∗yk
and c = Cxk. Assume furthermore that b �= 0 and c �= 0; otherwise the optimization
problem (3.6) is trivial. Note that since we assume ε‖D‖ < 1 the denominator g2(u, v)
is always nonzero.

By compactness, a maximizer must exist. Let us define the Lagrangian

L(u, v, μ, ν) = Re g(u, v)− 1

2
μ (u∗u− 1)− 1

2
ν (v∗v − 1) ,

where μ ∈ R, ν ∈ R are Lagrange multipliers, and impose the classical optimality
conditions. Observe that replacing g by its complex conjugate g leaves the problem
unchanged.

Denoting the jth component of u by uj = ujR + iujI , let us consider the partial

derivatives of g with respect to ujR and ujI and impose the conditions ∂L/∂ujR = 0
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and ∂L/∂ujI = 0. Since the function g(u, v) is holomorphic with respect to uj , the
Cauchy–Riemann equations yield

μujR =
∂Re g(u, v)

∂ujR
=
∂Im g(u, v)

∂ujI
,

μujI =
∂Re g(u, v)

∂ujI
= − ∂Im g(u, v)

∂ujR
,

which imply, using ∂/∂uj = 1/2
(
∂/∂ujR − i∂/∂ujI

)
,

∂Re g(u, v)

∂uj
=

1

2
μuj and i

∂Im g(u, v)

∂uj
=

1

2
μuj

so that we can write

∂g(u, v)

∂uj
= μuj .

The gradients of g1 and g2 with respect to u are the row vectors

∇ug1(u, v) = v∗cb∗ and ∇ug2(u, v) = −v∗εD.

Imposing ∇ug(u, v) = μu∗ we obtain

(3.7)
v∗cb∗ (1− εv∗Du)− b∗uv∗c (−εv∗D)

(1− εv∗Du)2
= μu∗.

A right multiplication by u gives a formula for the Lagrange multiplier

(3.8) μ =
b∗uv∗c

(1− εv∗Du)2
∈ R.

At the maximal value of g(u, v), we have

Re

(
b∗uv∗c

1− εv∗Du

)
> 0 and Re (1− εv∗Du) > 0

with the first inequality holding because we may take u = b, v = c and the second
holding because ε‖D‖ < 1. Therefore, we have μ > 0. Substituting (3.8) into (3.7),
dividing through by b∗uv∗c, and conjugating gives

(3.9) βb + εD∗v = u with β =
1− εu∗D∗v

u∗b
.

In order to obtain a similar formula for the gradient with respect to v we replace
g by g in (3.6), which has the same optimal solution. Doing so we obtain

∇vg1(u, v) = u∗bc∗ and ∇vg2(u, v) = 1− u∗εD∗.

Imposing ∇vg(u, v) = νv∗ we get

(3.10)
u∗bc∗ (1− εu∗D∗v)− c∗vu∗b (−εu∗D∗)

(1− εu∗D∗v)2
= νv∗.
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A right multiplication by v gives

(3.11) ν =
c∗vu∗b

(1− εu∗D∗v)2
= μ = μ.

Substituting (3.11) into (3.10), conjugating, and dividing through by b∗uv∗c gives

(3.12) γc+ εDu = v with γ =
1− εv∗Du

v∗c
.

We have

(3.13)
β

γ
=

1− εu∗D∗v
u∗b

v∗c
1− εv∗Du =

μ|1− εu∗D∗v|2
|b∗u|2 ,

a positive real number.
Now, combining (3.9) and (3.12), we find

u = Δ(βb + γεD∗c) and v = Δ̃ (γc+ βεDb) ,

where

(3.14) Δ =
(
I − ε2D∗D

)−1
and Δ̃ =

(
I − ε2DD∗)−1

.

Note the equivalences

DΔ = Δ̃D and ΔD∗ = D∗Δ̃.

Therefore, we have

u = βb̃ + γεD∗c̃ and v = γc̃+ βεDb̃,

where

(3.15) b̃ = Δb and c̃ = Δ̃c.

From (3.13) we can assume

(3.16) γ = ρβ with ρ > 0,

which implies

(3.17) u = β
(
b̃+ ρεD∗c̃

)
and v = β

(
ρc̃+ εDb̃

)
.

Substituting u, v given by (3.17) into the function g(u, v) to be optimized, we observe
that the argument of β does not play any role, that is, the function g depends only
on |β| whose purpose is to normalize the vectors u and v. So we can choose β real
and positive. Note also that (3.9) and (3.12) remain unchanged if we scale u, v, β,
and γ by any unimodular scalar eiθ.

From (3.17) we require

0 = ‖u‖2 − ‖v‖2 = β2
(
‖b̃‖2 + ρ2ε2‖D∗c̃‖2 − ρ2‖c̃‖2 − ε2‖Db̃‖2
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Fig. 3.1. The iterates of Algorithm SVSA0 superimposed on a plot of spectral value sets from
[17, Example 5.2.21]. The left panel shows convergence of the iterates (blue circles) for ε = 8.77,
while the right panel gives a close-up view of the iterates (red circles) for ε = 1. The black asterisks
plot the eigenvalues of A.

so

(3.18) ρ =

√
‖b̃‖2 − ‖εDb̃‖2
‖c̃‖2 − ‖εD∗c̃‖2 .

The last step is to choose β > 0 such that ‖u‖ = 1, which yields

(3.19) β =
1

‖b̃+ ρεD∗c̃‖
.

Substituting the optimal values (3.18)–(3.19) into (3.17) we obtain a pair (u, v) that
solves (3.6). This pair is unique up to multiplication of u and v by a unimodular
factor eiθ.

3.2. Basic algorithm statement. The derivation given above leads to the
following algorithm. To make it well defined, we interpret “rightmost eigenvalue”
below to mean the rightmost eigenvalue with largest imaginary part, in case there is
more than one with largest real part, although in practice we make no attempt to
break ties except in the case of complex conjugate pairs of eigenvalues of real matrices.
We adopt the convention that the algorithm breaks down if it generates a rightmost
eigenvalue λk which is not simple, controllable, and observable, as these properties
are needed for the basic step of the algorithm to be well defined. For later use, we
include as inputs to the algorithm the scalar ε and an initial pair of RP-compatible
vectors x0, y0. In the absence of any other estimates, these should in principle be
set to right and left eigenvectors corresponding to λ0, the rightmost eigenvalue of A
that is simple, controllable, and observable, although checking these conditions is not
actually practical.

Algorithm SVSA0(ε, x0, y0). Set u0, v0 to u and v as defined by (3.17)
using (3.18), (3.19), (3.15), and (3.14), where b = B∗y0 and c = Cx0. Set F0 =
εu0v

∗
0/(1− εv∗0Du0). For k = 1, 2, . . . ,
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Let λk be the rightmost eigenvalue of A + BFk−1C with corresponding RP-
compatible right and left eigenvectors xk and yk. Set uk, vk to u and v as
defined by (3.17) using (3.18), (3.19), (3.15), and (3.14), where b = B∗yk and
c = Cxk. Set Fk = εukv

∗
k/(1− εv∗kDuk).

Figure 3.1 shows iterates of Algorithm SVSA0 for computing the spectral value
set abscissa for a simple example, superimposing them on a spectral value set plot
in the complex plane. The matrix data, with n = 6, m = 6, and p = 1, as well as
the contour values ε = 0.5, 0.66, 0.83, 1.0, 8.77, are from [17, Example 5.2.21]. The
left panel shows convergence of the iterates for ε = 8.77, while the right panel gives
a close-up view for ε = 1. In both cases we initialize x0 and y0 to right and left
eigenvectors for the rightmost eigenvalue of A.

By construction, the sequence {Re λk} is bounded above by αε(A,B,C,D). Also,
the real part of the quantities λ′(0) in (3.1) and (3.3) is nonnegative for all k. This is
not enough to guarantee monotonicity of the sequence {Re λk}; however, we discuss
how to achieve monotonicity in section 3.5. First, we characterize fixed points of the
iteration described by Algorithm SVSA0.

3.3. Fixed points. Now denote by Tε the map that generates the pair (uk, vk)
from the pair (uk−1, vk−1) as defined by Algorithm SVSA0. Equivalently, Tε maps a
rank-one matrix uk−1v

∗
k−1 with norm one to a rank-one matrix ukv

∗
k with

norm one.
Definition 3.1. The pair (uk−1, vk−1) is a fixed point of the map Tε if λk−1 is

simple, controllable, and observable and uk = eiθuk−1, vk = eiθvk−1 for some θ ∈ R

or, equivalently, if ukv
∗
k = uk−1v

∗
k−1. It follows that λk = λk−1.

Theorem 3.2. Assume 0 < ε‖D‖ < 1 and suppose that (u, v) is a fixed point of
Tε corresponding to the rightmost eigenvalue λ ofM(εuv∗) that is simple, controllable,
and observable. Then G(λ) has a singular value equal to ε−1, and furthermore, if it
is the largest singular value, then λ satisfies the first-order necessary condition for a
local maximizer of (2.16) given in (2.17).

Conversely, assume 0 < ε‖D‖ < 1 and suppose that λ �∈ σ(A) satisfies (2.17),
and let u and v denote unit right and left singular vectors corresponding to the largest
singular value ε−1 of G(λ). Then λ is an eigenvalue of M(εuv∗), and if it is the
rightmost eigenvalue and is simple, then (u, v) is a fixed point of Tε.

Proof. Suppose (u, v) is a fixed point. This means that u and v satisfy (3.9) and
(3.12) with b = B∗y, c = Cx, and x, y, respectively, right and left RP-compatible
eigenvectors of M(εuv∗). By definition of x and y, it follows that (2.6) holds with
E = εuv∗, and by replacing x and y by βx and γy, respectively, we have (2.8).
Therefore, from the second part of Theorem 2.9, it follows that (2.5) also holds, that
is, u and v are respectively right and left singular vectors of G(λ) corresponding to the
singular value ε−1, and if this is the largest singular value, then Lemma 2.21 shows
that the first-order optimality conditions hold, using (2.18) and the positivity of y∗x.
The latter is not changed by the scaling of x by β and y by γ because β/γ is real and
positive, as shown in (3.13).

Conversely, if λ satisfies the first-order necessary conditions, then ε−1 is the largest
singular value of G(λ) and the corresponding unit right and left singular vectors u
and v satisfy the inequality in (2.17). Applying the first part of Theorem 2.9 with
E = εuv∗ we see that (2.6) holds for nonzero x and y defined by (2.7) so λ is an
eigenvalue of M(εuv∗), and furthermore u and v satisfy (2.8) and therefore also (3.9)
and (3.12) with β = γ = 1. Also, y∗x is real and positive using (2.17) and (2.18).
Thus, if λ is the rightmost eigenvalue of M(εuv∗) and it is simple, then (x, y) is a
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724 N. GUGLIELMI, M. GÜRBÜZBALABAN, AND M. L. OVERTON

fixed point of Tε. Note that Remark 2.11 shows that λ must be controllable and
observable.

As in [14, section 4], we conjecture that the only attractive fixed points for Algo-
rithm SVSA0 correspond to points λ that are local maximizers of (2.16).

3.4. Local convergence analysis. We have established that for sufficiently
small ε, Algorithm SVSA0 converges locally to rightmost points of the spectral value
set with a linear rate of convergence. We omit the details since the proof is a rather
lengthy generalization of the development in [14, section 5] but offers little additional
insight. In practice, we find that the algorithm almost always converges to a locally
rightmost point, without assuming that ε is small, although convergence to global
rather than local maximizers of (2.13) cannot be guaranteed.

3.5. A monotonic variant. Algorithm SVSA0 does not always generate a
monotonically increasing sequence {Re λk}, so we now derive a variant that does.
Consider the continuous matrix family

(3.20) N(t) = A+BF (t)C, where F (t) =
εu(t)v(t)∗

1− εv(t)∗Du(t) ,

with

(3.21) u(t) =
tuk + (1− t)uk−1

‖tuk + (1− t)uk−1‖
and v(t) =

tvk + (1− t)vk−1

‖tvk + (1− t)vk−1‖
.

The idea is that in case the rightmost eigenvalue of N(1) does not have real part
greater than that of λk, the rightmost eigenvalue of N(0) = A + BFk−1C, we may
instead choose t ∈ (0, 1) so that the rightmost eigenvalue of N(t) has this property.
As in [14, section 6], using ′ to denote differentiation with respect to t, we have

N ′(t) = B

(
εu(t)v(t)∗

1− εv(t)∗Du(t)

)′
C = N ′

1(t) +N ′
2(t),

N ′
1(t) =

1

1− εv(t)∗Du(t)B
(
εu(t)v(t)∗

)′
C,

N ′
2(t) = εBu(t)v(t)∗C

( 1

1− εv(t)∗Du(t)

)′
.

Evaluating these at t = 0, we find

N ′(0) = N ′
1(0) +N ′

2(0)

with

N ′
1(0) =

ε

1− εv∗k−1Duk−1
B
((
uk − Re(u∗kuk−1)uk−1

)
v∗k−1

+ uk−1

(
vk − Re(v∗kvk−1)vk−1

)∗)
C,

N ′
2(0) =

ε2

(1− εv∗k−1Duk−1)2

(
v∗kDuk−1 − (v∗k−1Duk−1)Re(v

∗
kvk−1)

+ v∗k−1Duk − (v∗k−1Duk−1)Re(u
∗
kuk−1)

)
Buk−1v

∗
k−1C.
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Now let λ(t) denote the eigenvalue of N(t) converging to λk as t→ 0. From standard
eigenvalue perturbation theory

(3.22) λ′(0) =
y∗kN

′(0)xk
y∗kxk

=
ψk

y∗kxk
,

where

ψk =
ε

1− εv∗k−1Duk−1

(
(v∗k−1Cxk)

(
y∗kBuk − (y∗kBuk−1)Re(u

∗
kuk−1)

)
(3.23)

+ (y∗kBuk−1)
(
v∗kCxk − (v∗k−1Cxk)Re(v

∗
kvk−1)

))
+
ε2(y∗kBuk−1)(v

∗
k−1Cxk)

(1− εv∗k−1Duk−1)2

(
v∗kDuk−1 − (v∗k−1Duk−1)Re(v

∗
kvk−1)

+ v∗k−1Duk − (v∗k−1Duk−1)Re(u
∗
kuk−1)

)
.

We know from the RP-compatibility of xk, yk that the denominator of (3.22) is real
and positive. Furthermore, if Re ψk < 0, we can change the sign of both uk and vk
so that Re ψk > 0. Excluding the unlikely event that Re ψk = 0, defining uk, vk
in this way guarantees that Re λ(t) > Re λk for sufficiently small t, so that the
following algorithm generates monotonically increasing {Re λk}. As before, we say
that the algorithm breaks down if it generates a rightmost eigenvalue λk that is not
simple, controllable, and observable. Note, however, that provided x0 and y0 are
RP-compatible right and left eigenvectors corresponding to a rightmost eigenvalue λ0
that is simple, controllable, and observable, and provided that Re λ1 > Re λ0 and
Re ψk �= 0 for all k, then for k > 1, as long as λk is simple, it must also be controllable
and observable.

Algorithm SVSA1(ε, x0, y0). Set u0, v0 to u and v as defined by (3.17) using
(3.18), (3.19), (3.15), and (3.14), where b = B∗y0 and c = Cx0. Set F0 = εu0v

∗
0/(1−

εv∗0Du0), and let λ1 be the rightmost eigenvalue of A+BF0C. For k = 1, 2, . . . ,
1. Set xk and yk to be right and left eigenvectors of A+BFk−1C corresponding

to the eigenvalue λk, normalized so they are RP-compatible. Set uk, vk to
u and v as defined by (3.17) using (3.18), (3.19), (3.15), and (3.14), where
b = B∗yk and c = Cxk. Furthermore, compute ψk defined in (3.23). If
Re ψk < 0, then replace uk by −uk and vk by −vk. Set t = 1 and set z to
the rightmost eigenvalue of N(t) as defined in (3.20), (3.21).

2. Repeat the following zero or more times until Re z > Re λk: replace t by t/2
and set z to the rightmost eigenvalue of N(t) as defined in (3.20), (3.21).

3. Set Fk = F (t) as defined in (3.20) and set λk+1 = z.
Note that if t is always 1, then Algorithm SVSA1 generates the same iterates as

Algorithm SVSA0, and if we omit step 2, Algorithm SVSA1 reduces to Algorithm
SVSA0.

Remark 3.3. In the case B = C = I, D = 0, Algorithm SVSA1 reduces to
a monotonically increasing algorithm for the pseudospectral abscissa as derived by
a similar argument in [14]. However, the analogous Algorithm PSA1 stated there
contains several errors: in step 1, z should be set to the rightmost eigenvalue of
A + εyx∗; in step 2, the stopping criterion should be Re z > Re zk; and in step
3, zk+1, not zk, should be set to z. The errors in the algorithm statement did not
affect the experimental results, except that Table 8.2 of [14] should show that the two
Boeing examples need just one bisection each, not two.
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By compactness, the monotonically increasing sequence {Re λk} generated by
Algorithm SVSA1 must converge. As noted in [14], this does not imply that {λk}
converges to an eigenvalue associated with a fixed point of Algorithm SVSA0, but
this is typical in practice.

3.6. Approximating the spectral value set radius. Algorithms for the spec-
tral value set radius ρε(A,B,C,D), defined in (2.19) and (2.22), are obtained by simple
variants of Algorithms SVSA0 and SVSA1. Observe that

d
(
|λ(t)|2

)
dt

∣∣∣∣∣
t=0

= 2Re
(
λ(0)λ′(0)

)
.

Thus, in order to maximize the modulus of the left-hand side of (3.1) or (3.3) instead
of the real part, we will obtain the same optimization problems (3.2) and (3.5) as
before if we simply require xk and yk to be RP(λk)-compatible, using Definition 2.30.
(Note the conjugate.)

Likewise, in order to ensure that the modulus of the left-hand side of (3.22) is
positive we again need only that Re ψk is positive, assuming that xk and yk are
RP(λk)-compatible. This leads to the following algorithm. To ensure that it is well
defined we say that if there is a tie for the outermost eigenvalue, the one whose
nonnegative complex argument is closest to zero is used. We say that the algorithm
breaks down if it generates an outermost eigenvalue that is not simple, controllable,
and observable. In the absence of other estimates, x0 and y0 are to be set to an
RP(λ0)-compatible pair of right and left eigenvectors for the outermost eigenvalue λ0
that is simple, controllable, and observable.

Algorithm SVSR1(ε, x0, y0). Set u0, v0 to u and v as defined by (3.17)
using (3.18), (3.19), (3.15), and (3.14), where b = B∗y0 and c = Cx0. Set F0 =
εu0v

∗
0/(1 − εv∗0Du0), and let λ1 be the outermost eigenvalue of A + BF0C. For

k = 1, 2, . . . ,
1. Set xk and yk to be right and left eigenvectors of A+BFk−1C corresponding

to the eigenvalue λk, normalized so they are RP(λk)-compatible. Set uk, vk
to u and v as defined by (3.17) using (3.18), (3.19), (3.15), and (3.14), where
b = B∗yk and c = Cxk. Furthermore, compute ψk defined in (3.23). If
Re ψk < 0, then replace uk by −uk and vk by −vk. Set t = 1 and set z to
the outermost eigenvalue of N(t) as defined in (3.20), (3.21).

2. Repeat the following zero or more times until |z| > |λk|: replace t by t/2 and
set z to the outermost eigenvalue of N(t) as defined in (3.20), (3.21).

3. Set Fk = F (t) as defined in (3.20) and set λk+1 = z.
Remark 3.4. In the case B = C = I, D = 0, Algorithm SVSR1 reduces to

a monotonically increasing algorithm for the pseudospectral radius as derived by a
similar argument in [14]. However, Algorithm PSR1 stated in [14] contains the same
errors as Algorithm PSA1 as described in Remark 3.3.

Let us also define Algorithm SVSR0, a variant of Algorithm SVSA0 for the spec-
tral value set radius, as Algorithm SVSR1 with step 2 omitted. The fixed point
theorem for Algorithm SVSA0, Theorem 3.2, extends in a straightforward way to
Algorithm SVSR0, replacing “rightmost” by “outermost” and using the first-order
optimality conditions for (2.22) given in (2.23). The local convergence results men-
tioned in section 3.4 also apply.

4. Approximating the H∞ norm. Recall that the H∞ norm was defined for
the continuous-time and discrete-time cases, respectively, in sections 2.1 and 2.2.
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4.1. The continuous-time case. We wish to compute ‖G‖c∞, defined in (2.14)
and (2.15). Assume that A is Hurwitz stable, so the norm is finite. We start by
observing that since the spectral value set abscissa αε(A,B,C,D) is a monotonically
increasing function of ε, we need only to solve the equation

(4.1) f(ε) ≡ αε(A,B,C,D) = 0

for ε ∈ R++. The first step is to characterize how αε depends on ε.
Theorem 4.1. Let λ(ε) denote the rightmost point of σε(A,B,C,D) for ε > 0,

ε‖D‖ < 1, and assume that Assumption 2.19 holds for all such ε. Define u(ε) and
v(ε) as right and left singular vectors with unit norm corresponding to ε−1, the largest
singular value of G(λ(ε)), and applying Theorem 2.9 with E(ε) = εu(ε)v(ε)∗, define
x(ε) and y(ε) by (2.6) and (2.7). Furthermore, assume that for a given value ε̂, the
rightmost point λ(ε̂) is unique. Then λ is continuously differentiable at ε̂ and its
derivative is real with

(4.2)
d

dε
αε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
λ(ε̂) =

1

y(ε̂)∗x(ε̂)
∈ R

++.

Proof. For the purposes of differentiation, we identify λ ∈ C with ζ ∈ R2 as
in the proof of Lemma 2.21. The first part of Assumption 2.19 ensures that the
largest singular value of G(λ) is differentiable with respect to λ and that the singular
vectors v(ε) and u(ε) are well defined up to multiplication of both by a unimodular
scalar and that E(ε) is not only well defined but differentiable with respect to ε.
The second part ensures that y(ε)∗x(ε) is nonzero, while the assumption that λ(ε̂) is
unique ensures that λ(ε) is unique in a neighborhood of ε̂ and, as an eigenvalue of
M(ε), is differentiable at ε̂ using standard eigenvalue perturbation theory. As in the
proof of Lemma 2.21, observe that

1

ε
− ‖C (λI −A)−1

B +D‖ = 0,

so differentiating this with respect to ε at ε̂ and using the chain rule yields

dλ(ε)

dε

∣∣∣∣
ε=ε̂

=
1

ε2v∗C(λ(ε)I −A)−2Bu
.

Furthermore, (2.18) follows (for λ = λ(ε)) from (2.7). Combining these with the
first-order optimality conditions for (2.16) in (2.17) gives the result.

Corollary 4.2. Make the same assumptions as in Theorem 4.1, except normal-
ize x(ε) and y(ε) so that they are RP-compatible. This is equivalent to scaling x(ε)
and y(ε) by 1/β(ε) and 1/γ(ε), respectively, where these are defined as in (3.9) and
(3.12) or equivalently in (3.19), (3.16), and (3.18). So

(4.3)
d

dε
αε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
λ(ε̂) =

1

β(ε̂)γ(ε̂)
(
y(ε̂)∗x(ε̂)

) ∈ R
++.

Remark 4.3. If A,B,C,D are all real, then σε(A,B,C,D) is symmetric with
respect to the real axis and hence its rightmost points must either be real or part of
a conjugate pair. In the latter case, the assumption that λ(ε̂) is unique does not hold
but the result still holds as long as there is no third rightmost point.

The derivative formula (4.3) naturally leads to a formulation of Newton’s method
for computing ‖G‖c∞. We first state this in an idealized form.
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Algorithm NHC0(ε1) (Newton’s method for H∞ norm for continuous-time
systems). For j = 1, 2, . . . ,

1. Compute the spectral value set abscissa αεj (A,B,C,D), along with the right-
most point λj and corresponding RP-compatible right and left eigenvectors
xj , yj and scalars βj , γj defined as in (3.9) and (3.12), or equivalently (3.19),
(3.16) using (3.14), (3.15), and (3.18), where b = B∗yj and c = Cxj .

2. Set

εj+1 = εj −
(
Re λj

)
βjγj

(
(yj)∗xj

)
.

Let εopt = (‖G‖c∞)−1, so that the rightmost point of σεopt(A,B,C,D) lies on
the imaginary axis, and suppose this rightmost point is unique or part of a complex
conjugate pair if A,B,C,D are real. It follows from Definition 2.15, Assumption 2.19,
Theorem 4.1, and Remark 4.3 that αε(A,B,C,D) is differentiable with respect to ε
at ε = εopt and that the derivative is positive. Thus, the nonzero derivative condition
for Newton’s method to converge quadratically holds, so the sequence {εj} defined by
Algorithm NHC0 converges quadratically to εopt if |ε1 − εopt| is sufficiently small.

In practice, each step of Algorithm NHC0 requires a call to Algorithm SVSA1
to compute the spectral value set abscissa via an “inner iteration.” It is generally
desirable to “warm start” this computation by providing as input to Algorithm SVSA1
not only the new value of ε, but also the final right and left eigenvectors already
computed for the previous value of ε, as opposed to repeatedly initializing Algorithm
SVSA1 with right and left eigenvectors corresponding to a rightmost eigenvalue of A.
In the absence of any other estimates, x0 and y0 are to be set to an RP-compatible
pair of right and left eigenvectors for the rightmost eigenvalue λ0 that is simple,
controllable, and observable.

Algorithm NHC1(ε1, x0, y0). For j = 1, 2, . . . ,
1. Call Algorithm SVSA1(εj ,xj−1,yj−1) to compute the spectral value set ab-

scissa αεj (A,B,C,D), also returning rightmost point λj , corresponding RP-
compatible right and left eigenvectors xj , yj , and corresponding scalars βj ,
γj defined as in (3.9) and (3.12), or equivalently (3.19), (3.16) using (3.14),
(3.15), and (3.18), where b = B∗yj and c = Cxj .

2. Set

εj+1 = εj −
(
Re λj

)
βjγj

(
(yj)∗xj

)
.

Since Newton’s method may not converge if it is not initialized near the solution,
it is standard practice to combine it with a bisection method to enforce convergence.
While there are many variants of Newton-bisection methods in the literature, a good
choice is the rtsafe routine [26, 16], a hybrid Newton-bisection method that maintains
an interval known to contain the root, bisecting when the Newton step is either outside
the interval or does not yield a sufficient decrease in the absolute function value (in
this case, |f(εj)| ≡ |αεj (A,B,C,D)| = |Re λj |). This safeguard is also useful in the
unlikely event that f is not differentiable at some values of εj. If one has nonnegative
lower and upper bounds hlb and hub on ‖G‖c∞, then these can be used to define initial
lower and upper bounds εlb and εub on εopt by

εlb =
1

hub
≤ εopt ≤ εub =

1

hlb
.

When such bounds are not known, we use the trivial initial lower bound εlb = 0
and first call SVSA1 for ε = min(dN , δ/2), where dN is the Newton step from 0 as
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defined above and δ = ‖D‖−1 (with δ =∞ if ‖D‖ = 0). The rationale for this is that
‖M(E)‖ potentially blows up as ‖DE‖ → 1, so it is inadvisable to try to compute
αε(A,B,C,D) with ε closer to δ than needed. We then repeatedly do the substitution
ε ← min(2ε, (ε+ δ)/2) until we find αε(A,B,C,D) > 0 giving an upper bound εub.
Putting all this together, we call the resulting algorithm NBHC1 (Newton-bisection
method for the H∞ norm for continuous-time systems). We emphasize, however,
that this is still an idealized algorithm because there is no guarantee that Algorithm
SVSA1 will return the correct value of αεj (A,B,C,D).

4.2. The discrete-time case. In this case, the H∞ norm is the quantity ‖G‖d∞
defined in (2.20) and (2.21). Assume that A is Schur stable so that the norm is finite.
Equation (4.1) is replaced by

f(ε) ≡ ρε(A,B,C,D) − 1 = 0,

where, as in the continuous-time case, f is a monotonically increasing function of
ε. Defining λ(ε) as the outermost point of σε(A,B,C,D), and assuming that it is
nonzero and unique for a given value ε̂, (4.2) is replaced by

(4.4)
d

dε
ρε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
|λ(ε̂)|, d

dε
λ(ε̂) =

1

y(ε̂)∗x(ε̂)

when the eigenvectors are normalized by (2.7). Applying the first-order optimality
conditions for (2.22) given in (2.23), we find that the right-hand side of (4.4) is a
multiple of λ(ε̂). Equation (4.3) is replaced by

d

dε
ρε(A,B,C,D)

∣∣∣∣
ε=ε̂

=
d

dε
|λ(ε̂)|, d

dε
λ(ε̂) =

1

β(ε̂)γ(ε̂)
(
y(ε̂)∗x(ε̂)

)
when the eigenvectors are normalized to be RP(λ(ε̂))-compatible, with the right-hand
side again a multiple of λ(ε̂). Algorithm NHC0 is replaced by the following.

Algorithm NHD0(ε1) (Newton’s method for H∞ norm for discrete-time sys-
tems). For j = 1, 2, . . . ,

1. Compute the spectral value set radius ρεj (A,B,C,D), along with the outer-

most point λj , corresponding RP(λ
j
)-compatible right and left eigenvectors

xj , yj and corresponding scalars βj , γj defined as in (3.9) and (3.12), or
equivalently (3.19), (3.16) using (3.14), (3.15), and (3.18), where b = B∗yj

and c = Cxj .
2. Set

εj+1 = εj −
(
|λj | − 1

)
βjγj

∣∣(yj)∗xj∣∣.
This algorithm is quadratically convergent. A less idealized version is the fol-

lowing, where x0, y0 are set, in the absence of any other estimates, to right and
left eigenvectors for λ0, the outermost eigenvalue of A, normalized to be RP(λ0)-
compatible.

Algorithm NHD1(ε1, x0, y0). For j = 1, 2, . . . ,

1. Call Algorithm SVSR1(εj , xj−1, yj−1) to compute the spectral value set
radius ρεj (A,B,C,D), also returning outermost point λj , corresponding RP

(λj)-compatible right and left eigenvectors xj , yj and corresponding scalars
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βj , γj defined as in (3.9) and (3.12), or equivalently (3.19), (3.16) using (3.14),
(3.15), and (3.18), where b = B∗yj and c = Cxj .

2. Set

εj+1 = εj −
(
|λj | − 1

)
βjγj

∣∣(yj)∗xj∣∣.
This algorithm has only local convergence guarantees but can be globalized under

the assumption that Algorithm SVSR1 returns the correct answer for ρεj (A,B,C,D)
by combining it with the rtsafe routine, using an initial interval for ε as described
above, giving an algorithm that we call NBHD1 (Newton-bisection method for H∞
norm for discrete-time systems).

5. Numerical results. Our MATLAB codes SVSAR and HINFNORM imple-
menting the spectral value set abscissa and radius and H∞ norm algorithms (Al-
gorithms SVSA1, SVSR1, NBHC1, and NBHD1) are freely available at the website
http://cims.nyu.edu/∼mert/software/hinfinity.html. We have tested these on many
examples from the Compleib [23] and EigTool [30] collections. The example data
and the script used to generate results shown in this section are also available on the
website, together with the codes.

We use the following stopping condition in step 1 of the SVSA1 and SVSR1
algorithms: termination takes place at iteration k ≥ 1 if

|φ(λk)− φ(λk−1)| < max(1, |φ(λk−1)|) ftol,

where φ is the real part or modulus function, respectively, and we use the value
ftol = 10−12. We also set the maximum number of iterations of SVSA1 and SVSR1
to 100. The rtsafe routine, which is used to implement the NBHC1 and NBHD1
algorithms as explained above, uses both relative and absolute tolerances. The ter-
mination condition is ∣∣∣εk − εk−1

∣∣∣ ≤ max(atol, |εk−1| rtol),

where rtol and atol were both set to 10−10. The results were obtained using MAT-
LAB Release 2012b on a MacBook Air with a 1.8 GHz dual-core CPU (i7-2677M).

5.1. Small dense problems. We first consider small dense problems for which
we can compare our results with a standard implementation of the BBBS algorithm
for computing the H∞ norm, namely, the getPeakGain1 function in the Control
Systems Toolbox of MATLAB [24] with tolerance 10−10. For these problems, in
Algorithms SVSA1 and SVSR1, all eigenvalues and right eigenvectors of the matrices
Mk := M(εukv

∗
k) = M + BFkC are computed by calling the standard MATLAB

eigenvalue routine eig. To compute the left eigenvectors of Mk, we make a second
call to eig, computing the right eigenvectors of the transposed matrix MT

k instead
of inverting the possibly ill-conditioned matrix of right eigenvectors. Once right and
left eigenvectors are computed, they are normalized to satisfy the RP-compatibility
condition.

Compleib [23] is a database of continuous-time control-design examples, many
from real applications, collected from the engineering literature. Each of these exam-
ples defines an “open-loop plant,” described by a system of the form (1.1). In most

1This code, which calls routines from the SLICOT library to compute the eigenvalues of Hamil-
tonian matrices using a method that preserves Hamiltonian structure, supersedes the older function
ss/norm starting with Release 2012a of MATLAB.
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Table 5.1

Results for dense continuous-time problems from Compleib. The rel diff column shows the
relative difference between the ‖G‖c∞ norm computed by Algorithm NBHC1 and that computed by
the BBBS algorithm implemented in MATLAB. The last two columns show the number of Newton
iterates and the number of other iterates (doubling and bisection steps) in Algorithm NBHC1.

Example n m p ||G||c∞ rel diff ni oi
CBM 351 2 1 2.630e− 01 −1.5e− 15 4 4
CSE2 63 32 1 2.034e− 02 +2.3e− 11 9 6
CM1 23 3 1 8.165e− 01 +7.7e− 14 3 16
CM3 123 3 1 8.203e− 01 −3.5e− 06 0 34
CM4 243 3 1 1.411e+ 00 −9.3e− 02 0 33
HE6 23 16 6 4.929e+ 02 0.0e+ 00 25 16
HE7 23 16 9 3.465e+ 02 0.0e+ 00 4 5
ROC1 12 2 2 1.217e+ 00 −4.7e− 04 3 5
ROC2 13 1 4 1.334e− 01 0.0e+ 00 3 4
ROC3 14 11 11 1.723e+ 04 −3.0e− 11 2 4
ROC4 12 2 2 2.957e+ 02 −2.3e− 06 3 3
ROC5 10 2 3 9.800e− 03 0.0e+ 00 5 26
ROC6 8 3 3 2.576e+ 01 0.0e+ 00 3 5
ROC7 8 3 1 1.122e+ 00 −2.9e− 10 16 3
ROC8 12 7 1 6.599e+ 00 −5.7e− 11 5 4
ROC9 9 5 1 3.294e+ 00 −6.5e− 13 5 4
ROC10 9 2 2 1.015e− 01 +3.6e− 12 4 4

cases, this open-loop system is not Hurwitz stable, and hence its H∞ norm is +∞, ac-
cording to our definition (2.15). However, by designing an appropriate controller, the
open-loop system can typically be stabilized, defining a “closed-loop plant” associated
with a different system of the form (1.1), one with a finite H∞ norm. We obtained
these stabilized closed-loop systems by computing third-order controllers using the
HIFOO package [7].

Table 5.1 compares the results for the new NBHC1 algorithm with the BBBS
algorithm for computing the H∞ norm of the closed-loop systems obtained in this
way for 17 different examples from Compleib. The columns headed n, m, and p
specify the dimension of the state space and the number of outputs and inputs in
(1.1). The column headed ‖G‖c∞ shows the value of the norm computed by the
new algorithm. The column headed rel diff shows the relative difference between
the value of the H∞ norm computed by Algorithm NBHC1 and that obtained using
getPeakGain; this is clarified below. The small values shown in this column for
13 of the 17 examples indicate that our algorithm converged to a global maximizer
of the optimization problem in (2.14) and (2.15). In three of the other four cases,
plots (not shown here) of the spectral values sets and the norm function ‖G(iω)‖ for
ω ∈ R indicate that Algorithm NBHC1 found only a local maximizer of (2.15) because
Algorithm SVSA1 repeatedly returned a local maximizer of (2.13) for the sequence
εj . However, the example CM3 was different. In this case, on a single occasion
Algorithm SVSA1 returned a locally maximal value for αε(A,B,C,D) which was
negative when the globally optimal value was positive, resulting in an invalid update to
the lower bound εlb in Algorithm NBHC1. Subsequently, Algorithm SVSA1 returned
globally optimal values, but the consequence was convergence of ε to the invalid
lower bound, resulting in a final value of ε−1 that is not a stationary value of ‖G(i·)‖.
Spectral value set plots for CM3 and CM4 show that they have many locally rightmost
points and that the norm function ‖G(i·)‖ has many local maximizers, making these
problems particularly difficult. However, in cases where the global maximizer was
not found, restarting Algorithm NBHC1 at an eigenvector pair corresponding to a
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different eigenvalue of A (not a rightmost one) sometimes resulted in convergence to
the global maximizer.

The columns headed ni and oi show the number of Newton iterates and the
number of other iterates (bisection steps inside rtsafe and initial steps taken to find
an upper bound εub) in Algorithm NBHC1, so the sum of these two numbers is the
number of calls to Algorithm SVSA1 for different values of εj . Once an upper bound
is obtained and a first bisection step is taken, we observe that in many of the examples
only Newton steps are taken subsequently and termination takes place rapidly.

According to (2.15), for stable A the norm ‖G‖c∞ is the maximum of ‖G(λ)‖
over the imaginary axis. Algorithm NBHC1 does not verify the norm computation
explicitly but returns a value for ε̂ for which the rightmost point λ̂ of σε̂(A,B,C,D)
is estimated to lie on the imaginary axis, and hence ε̂−1 is an estimate of the norm.
Thus, for validation purposes, we need to actually compute ‖G(iωNBHC1)‖ where

ωNBHC1 = Im λ̂ to obtain a guaranteed lower bound for ‖G‖c∞, neglecting rounding
errors in the computation of the largest singular value. Similarly, the BBBS algo-
rithm implemented in getPeakGain returns a value for the norm, along with a second
output argument, which we denote ωBBBS, which is the algorithm’s estimate of the
corresponding point on the imaginary axis where the maximum is attained. So, again
for validation purposes, we compute ‖G(iωBBBS)‖ to obtain a guaranteed lower bound
on the norm. The relative difference reported in the sixth column is therefore

rel diff =
‖G(iωNBHC1)‖ − ‖G(iωBBBS)‖

max(‖G(iωNBHC1)‖, ‖G(iωBBBS)‖)
.

The Compleib examples correspond to physical control systems that are all posed
in continuous time. In order to create discrete-time examples of the form (1.2), we
sampled these systems with sampling time Ts = 1, but these are usually not Schur
stable. So, we attempted to stabilize these discrete-time open-loop systems with the
HIFOOd package [25], which is an extension of HIFOO to discrete-time systems. In
these examples, the order of the controller was taken to be 5 except for some of the
smaller dimensional examples with n < 10, where we used a fourth-order controller.
Since the examples in Table 5.1 are posed in continuous time, some of them could not
be stabilized in discrete time by HIFOOd, so we added some new examples instead
of these. The results for these discrete-time problems are shown in Table 5.2. The
relative differences reported in the sixth column are computed in the same way as
previously, except that now the norm must be evaluated at points on the unit circle
returned by the two algorithms. The results are not as favorable as in Table 5.1, but
the new algorithm still obtains accurate estimates of the global maximizer for 9 out of
17 examples. In most other cases the algorithm apparently found a local maximizer,
with the exception of AC15, where all iterates were real and converged to λ = 1, a
local minimizer of ‖G(eiθ)‖ over θ ∈ [0, 2π).

5.2. Large sparse matrices. As in [14], our MATLAB implementation sup-
ports three kinds of matrix input: dense matrices, sparse matrices, and function han-
dles, which specify the name of a MATLAB file implementing matrix-vector products.
In the last two cases, we compute the rightmost eigenvalue of Mk and corresponding
right eigenvector with the MATLAB routine eigs, which is an interface for ARPACK,
a well-known code implementing the implicitly restarted Arnoldi method [22]. This
was called with its default parameters, except that the number of eigenpairs requested
was increased from the default of 6 to 8. Since eigs does not requireMk explicitly but
needs only the ability to do matrix-vector products with Mk, it also accepts as input
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Table 5.2

Results for dense discrete-time version of problems from Compleib. The rel diff column shows
the relative difference between the ‖G‖d∞ norm computed by Algorithm NBHD1 and that computed
by the BBBS algorithm implemented in MATLAB. The last two columns show the number of Newton
iterates and the number of other iterates (doubling and bisection steps) in Algorithm NBHD1.

Example n m p ||G||d∞ rel diff ni oi
AC5 8 4 4 7.626e+ 01 −1.3e− 14 2 4
AC12 8 1 3 1.082e+ 01 −3.6e− 11 3 3
AC15 8 6 4 2.369e+ 01 −3.1e− 04 2 4
AC16 8 6 4 1.818e+ 01 −6.1e− 03 4 5
AC17 8 4 4 3.001e+ 05 −2.2e− 11 2 4
REA1 8 4 4 7.438e+ 02 −2.1e− 11 3 4
AC1 10 2 3 1.500e− 01 −2.1e− 03 5 3
AC2 10 5 3 3.056e− 01 −1.2e− 12 4 4
AC3 10 5 5 1.912e+ 01 −5.4e− 11 4 4
AC6 12 7 7 5.294e+ 07 −1.4e− 07 3 6
AC11 10 5 5 2.185e+ 07 −2.8e− 08 2 4
ROC3 16 11 11 2.337e+ 01 −4.2e− 11 3 6
ROC5 12 2 3 3.911e+ 03 −1.1e− 09 3 4
ROC6 10 3 3 1.720e+ 01 −1.6e− 05 8 10
ROC7 10 3 1 1.109e+ 00 −1.0e− 07 9 6
ROC8 14 7 1 6.283e+ 04 −3.3e− 11 3 4
ROC9 11 5 1 2.861e+ 01 −5.6e− 05 3 4

either a sparse matrix or a function handle. The last is crucial, because we must avoid
computing the dense matrix Mk = A+BFkC explicitly. On the other hand, writing
an efficient function to compute matrix-vector products with Mk is straightforward,
and it is a handle for this function that we pass to eigs, which computes the largest
eigenvalue with respect to real part or modulus, respectively. As in the dense case, we
compute the left eigenvector of Mk by a second call to the eigenvalue routine, in this
case eigs, to find the right eigenvector of the transposed matrixMT

k . Thus, when the
input to our implementation is a function handle, it must implement matrix-vector
products with MT

k as well as with Mk.
The results for Algorithms NHBC1 and NHBD1 on large sparse continuous-time

and discrete-time problems are summarized in Tables 5.3 and 5.4, respectively. In
Table 5.3 the first example NN18 is from Compleib; in the other examples the A matrix
is obtained from EigTool with B, C, and D generated randomly. The Shift column
in Table 5.3 shows the multiple of I that we subtracted from the EigTool matrix
to make it Hurwitz stable. Similarly, the Scale column in Table 5.4 shows the scale
factor that we divided into the EigTool matrix to make it Schur stable. The tolosa

Table 5.3

Results of Algorithm NBHC1 on sparse continuous-time problems from Compleib and EigTool.
The last seven columns show the computed ‖G‖c∞ norm, the number of Newton iterates, the number
of other iterates, the number of pairs of calls to eigs, the time required in seconds by Algorithm
NBHC1, the time required in seconds for the BBBS algorithm, and the relative difference in the
norm.

Example Shift n m p ||G||c∞ ni oi eigs t-nbhc1 t-bbbs rel diff
NN18 0 1006 2 1 1.0234 3 3 40 62 93 −1.3e− 15
dwave −I 2048 6 4 38020 4 3 21 116 694 0.0e+ 00
markov −2I 5050 6 4 6205.5 2 4 21 107 - -
pde −10I 2961 6 4 368.75 4 3 50 67 - -
rdbrusselator −I 3200 6 4 1868.3 3 3 54 305 - -
skewlap3d 0 24389 6 4 217.4 3 36 511 17855 - -
sparserandom −3I 10000 6 4 141905 2 3 13 11 - -
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Table 5.4

Results of Algorithm NBHD1 on sparse discrete-time problems from EigTool. The last seven
columns show the computed ‖G‖d∞ norm, the number of Newton iterates, the number of other it-
erates, the number of pairs of calls to eigs, the time required in seconds by Algorithm NBHD1, the
time required in seconds for the BBBS algorithm, and the relative difference in the norm.

Example Scale n m p ||G||d∞ ni oi eigs t-nbhd1 t-bbbs rel diff
dwave 1 2048 6 4 39027 4 3 24 134 1689 0.0e+00
markov 2 5050 6 4 4112.7 4 9 54 252 - -
pde 10 2961 6 4 3645.6 3 11 636 792 - -
rdbrusselator 120 3200 6 4 3891.8 4 3 37 58 - -
skewlap3d 11000 24389 6 4 30342 2 32 637 16476 - -
sparserandom 3 10000 6 4 3.951e+06 2 3 12 9 - -
tolosa 5000 4000 6 4 5.663e+06 4 6 424 2250 - -

problem does not appear in Table 5.3 because eigs failed to compute the rightmost
eigenvalue of A to the default required accuracy using the default input parameters,
and the NN18 problem does not appear in Table 5.4 because HIFOOd could not find
a stable discrete-time closed-loop system. The column headed eigs in Tables 5.3
and 5.4 reports the number of pairs of calls made to eigs (to compute right and left
eigenvectors). The next two columns report the timing in seconds for our algorithm
and for the BBBS algorithm implemented in getPeakGain respectively. These timings
are included only to give some idea of the efficiency of the new algorithm, which is
implemented in MATLAB and far from optimized; in contrast the getPeakGain code
calls compiled Fortran routines to solve the Hamiltonian eigenvalue problems but
is not intended for large sparse problems and hence was run only for the smaller
problems. The final column shows the relative difference in the computed value in
the cases where we were able to run both codes.

For most of the problems reported in Tables 5.3 and 5.4, the work required for the
H∞ norm computation is just a few dozen times as much work as the computation of
the spectral abscissa or spectral radius of A. The most notable exception is the largest
problem skewlap3d, which required many iterations to find an upper bound εub. For
this example, if we simply set the upper bound εub a priori to 0.999/‖D‖, the number
of iterations is dramatically reduced, but for reasons mentioned in section 4.1, this
does not seem to be a good strategy in general.

6. Open questions and future work. In this paper we have presented new
efficient algorithms for approximating the spectral value set abscissa and radius for a
linear dynamical system along with the H∞ norm of the associated transfer matrix
function. We conclude by briefly discussing various issues that appear to be worth
investigating in future work.

6.1. Multiplicity, controllability, and observability. Algorithms SVSA0,
SVSA1, SVSR0, and SVSR1 all break down if they generate a rightmost eigenvalue
λk which is not simple, controllable, and observable, as these properties are needed
for the basic step of the algorithm to be well defined. Except for trivial examples,
in the context of floating point arithmetic it is simply not possible to check whether
an eigenvalue is simple, controllable, or observable because it requires determining
whether a computed quantity is exactly zero. For this reason, our codes do not
attempt to check these properties. A natural question, however, is what effect nearness
to multiplicity, uncontrollability, or unobservability has on algorithmic behavior.

If the eigenvalue λk is nearly multiple, then y∗kxk may be very small (it is zero if
the eigenvalue is defective, that is, has algebraic multiplicity greater than its geometric
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multiplicity), while if the eigenvalue is nearly uncontrollable or nearly unobservable,
‖B∗yk‖ and ‖Cxk‖ may be very small (the former is zero if the eigenvalue is uncon-
trollable and the latter is zero if the eigenvalue is unobservable). Indeed, instead of
focusing on the rightmost eigenvalue, one might want to choose an eigenvalue that
balances nearness to being the rightmost eigenvalue with desirability of the quantities
y∗kxk, ‖B∗yk‖, and ‖Cxk‖. Since y∗kxk appears in the denominator of (3.4), it is actu-
ally desirable that it be small: this reflects the fact that nearly defective eigenvalues
move rapidly under perturbation. On the other hand, B∗yk and Cxk appear in the
numerator of (3.4) so it is undesirable that they have small norm; nearly uncontrol-
lable or nearly unobservable eigenvalues move slowly under perturbation. The latter
point is addressed in section 3.2 of a recent paper by Benner and Voigt [3], which
presents an algorithm closely related to ours, as discussed further below.

6.2. Convergence of the spectral value set abscissa algorithms. As noted
in section 3.4, we have established that for sufficiently small ε, Algorithm SVSA0
converges locally to rightmost points of the spectral value set with a linear rate of
convergence. Yet, we typically see convergence for large values of ε as well. It does
not seem likely that the proof techniques developed in [14] for small ε can be extended
to large ε so a different approach may be needed.

Algorithm SVSA1 was introduced in section 3.5 to ensure that the iterates Re λk
generated by the Algorithm are monotonically increasing. We find that in practice
this is very effective in some cases, enabling convergence when the basic algorithm
SVSA0 fails, although on most of our test examples there was no difference between
the behavior of the two algorithms; in other words, the quantity t in Algorithm SVSA1
was always one. However, Algorithm SVSA1 could fail if the quantity Re ψk is zero,
or, as is perhaps more likely, it converges to zero over a sequence of iterations resulting
in stagnation of the algorithm. This needs further investigation.

Characterizing when the spectral value set abscissa algorithms converge to global
rather than local maximizers of (2.13) would seem to be a hard problem, even though
the maximization problem has only two real variables. As was observed for problem
AC15 in the discrete-time case, convergence to a local minimizer is also possible but
this seems unlikely unless all iterates are real, as was the case for AC15. The possibility
that a local minimizer could correspond to a fixed point of Algorithm SVSA0 is covered
by Theorem 3.2. However, as noted at the end of section 3.3, we conjecture that such
fixed points are not attractive, meaning that reinitializing the algorithm with λ set
to a small complex perturbation of the final real iterate will almost surely result in
moving away from the local minimizer; see [14, Figure 4.1]. It would be interesting
to prove or disprove this conjecture.

6.3. Convergence of the H∞ norm algorithms. The hybrid Newton-
bisection algorithms NBHC1 and NBHD1 are each guaranteed to find a root of the
associated function f(ε) = 0 provided that Algorithms SVSA1 and SVSR1 compute
the spectral value set abscissa and radius functions correctly for each εj, but in prac-
tice this cannot be guaranteed. Furthermore, a natural question is how accurately the
spectral value set abscissa and radius computations should be done to obtain reason-
able accuracy of the H∞ norm computations. We saw in the results in Table 5.1 that
Algorithm NBHC1 sometimes returns only a local maximizer of (2.14) and (2.15), but
that it is also possible, as in the case of CM3, that the final value is not a stationary
value of ‖G(i·)‖ because of an invalid update to the lower bound εlb. This could be
avoided by reconsidering the validity of the lower bound if the ε iterates converge to
it. On the positive side, when Algorithm SVSA1 returns a positive value that is not
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globally optimal it still results in a valid update to the upper bound εub, suggesting
that we should terminate the spectral value set and radius computations as soon as
they return a positive value.

Recall from Theorem 4.1 and Remark 4.3 that the idealized algorithms NHC0 and
NHD0 are quadratically convergent as long as the rightmost point of σεopt(A,B,C,D)
is unique (or part of a complex conjugate pair in the real case). A natural question is,
when might this assumption fail to hold? One answer is that it may not hold if the
A,B,C,D matrices depend on parameters over which optimization has been done to
minimize the corresponding H∞ norm, as explained in [8] for the case B = C = I,
D = 0 (maximizing the distance to instability for A). However, even then, the
property will fail only in the limiting case of optimal choices of the parameters.

6.4. Relationship with other recent work. Several papers on related topics
have appeared recently. Benner and Voigt [3] have also generalized the algorithm
of [14] to compute the H∞ norm of a transfer matrix. The basic algorithm is quite
similar, but the specific problem addressed is different. Their linear dynamical system
is a descriptor system, which introduces a (possibly singular) matrix factor on the left-
hand side of the first equation ẋ = Ax + Bu in (1.1) but sets D = 0 in the second
equation y = Cx +Du. In addition, as mentioned above, they select the eigenvalue
to which the basic algorithm is to be applied at each step by balancing the distance
to rightmost eigenvalue with measures of the observability and controllability of the
eigenvalue. Kressner and Vandereycken [21] have introduced a more efficient variant
of the algorithm of [14] based on computing the pseudospectral abscissa of a small
rectangular matrix pencil. It would be interesting to investigate whether similar ideas
can be used for the spectral value set abscissa. Finally, Freitag and Spence [10] have
introduced an efficient Newton method for computing the distance to instability for
a large sparse matrix A and extensions of this to an algorithm to compute the H∞
norm of a transfer matrix are in progress [11]. In conclusion, this is an active research
area and it will be interesting to compare the advantages and disadvantages of various
methods for estimating the H∞ norm in the near future.

Acknowledgments. Special thanks to Daniel Kressner for suggesting the focus
on spectral value sets. Thanks also to the referees for carefully reading the paper
and making many useful suggestions. We are also very grateful to Tim Mitchell for
his assistance at the revision stage of this paper. He made substantial improvements
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